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While working at the Berlin Academy, the renowned Swiss mathematician Leonard 
Euler was asked to tutor Frederick the Great's  niece, the Princess of Anhalt-Dessau, 
in all matters of natural science and philosophy [17]. Euler's tutelage of the princess 
continued from 1 760 to 1 762 and culminated in the publishing of the popular and 
widely-translated "Letters to a German Princess" [9] .  In the letters, Euler eloquently 
wrote about diverse topics ranging from why the sky was blue to free will and deter
minism. 

In his lesson on categorical propositions and syllogisms, Euler used diagrams com
prised of overlapping circles ; these diagrams became known as Eulerian circles, or 
simply Euler diagrams. In an Euler diagram, a proposition's  classes are represented as 
circles whose overlap depends on the relationship established by the proposition. For 
example, the propositions 

All arachnids are bugs 
Some bugs are cannibals 

can be represented by FIGURE 1 .  

(C)annibals 
(B)ugs 

(A)rachnids 
Figure 1 An exa m p l e  of an Eu ler  d i agram 

9 1  
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In 1880, a Cambridge priest and mathematician named John Venn published a paper 
studying special instances of Euler diagrams in which the classes overlap in all possible 
ways [27]; although originally applied to logic reasoning, these Venn diagrams are now 
commonly used to teach students about set theory. For example, the Venn diagram in 
FIGURE 2 shows all the ways in which three sets can intersect. The primary difference 
between Venn and Euler diagrams is how they represent empty sets (e.g., the set of 
arachnids which are not bugs in the example of FIGURE 1). In an Euler diagram, 
regions representing empty sets are omitted, while in Venn diagrams they are included 
but denoted by shading. 

Figure 2 A Venn diagram that represents the Euler diagram in FIGURE 1 by shading the 
missing regions 

Informally, an n-Venn diagram is a set of n simple, closed curves that subdivide 
the plane into 2n connected regions with each region uniquely mapping to a subset 
of the n curves consisting of those curves which enclose it. The regions are usually 
referred to by their enclosing curves. For example, the 3- Venn diagram in FIGURE 
2 with curves {A, B, C} has regions {0, A, B, C, AB, AC, BC, ABC}. If an n-Venn 
diagram's curves are equivalent to each other modulo translations, rotations, and re
flections, then the diagram is referred to as a congruent n-Venn diagram. 

In recent years, there has been renewed interest in studying the combinatorial and 
geometric properties of Venn diagrams [7, 24]. Of paramount importance is how to 
draw a Venn diagram for a given number of sets. John Venn proposed an iterative al
gorithm in his original Venn paper [27]; unfortunately, the resulting drawings lacked 
an aesthetic appeal. In 1989, Anthony Edwards developed an elegant method for draw
ing n-Venn diagrams that produced highly symmetric drawings [6]. FIGURE 3 shows 
a comparison of 5-Venn diagrams drawn using Venn's and Edwards' algorithms. 

An interesting problem popularized by Griinbaum [13, 14, 15, 16] is to consider 
which Venn diagrams can be drawn using specific shapes. FIGURE 2 shows a 3-Venn 
diagram comprised of circles; a natural question to ask is if such a diagram exists for 
four sets. It turns out the answer is no. First observe that three circles intersect to form 
at most eight regions. The addition of the fourth circle can intersect each of the others 
at most twice, and this maximum of six intersection points partitions the fourth circle 
into six arcs forming at most six new regions for a maximum of 8 + 6 = 14 regions, 
not the 16 we require [24]. FIGURE 4 shows examples of Venn diagrams drawn using 
ellipses [13] and triangles [3]. The diagram in FIGURE 4(a) is special because it is 
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Venn Edwards 

Figure 3 A 5-Ve n n  d i agram d rawn i terative ly  u s i ng Ven n 's and Edwards' a l gor ith ms; the 
l ast cu rve d rawn i s  h i g h l ighted . 

an example of a symmetric Venn diagram; that is, a diagram with n-fold rotational 
symmetry and (necessarily) congruent curves.  Symmetric Venn diagrams exist if and 
only if n is prime [11 ] .  

(a) (b) 

Figure 4 (a) A symmetr ic 5-Ve n n  d i agram u s i n g  e l l i pses and (b) a 6-Ve n n  d i agram u s i ng 
t r iang les 

On his "Math Recreations" web site [26] , Mark Thompson proposed the novel prob
lem of finding Venn polyominoes (from now on referred to as n -polyVenns) ;  these 
are Venn diagrams whose curves are the outlines of polyominoes .  Polyominoes, or 
n-ominoes,  are a generalization of dominoes (2-ominoes) whereby shapes are formed 
by gluing together n unit squares.  One can also think of a polyomino as being the re
sult of cutting a shape from a piece of graph paper where the cuts are made along the 
lines. Thompson found examples of congruent n-polyVenns for n = 2, 3 ,  4, and using 
a computer search, we found a congruent 5-polyVenn (see FIGURE 5) .  

In the remainder of this paper, our focus is on minimizing the total area of the draw
ing (relative to a scaling factor) . We present some examples that minimize area accord
ing to various additional constraints . At present, these examples do not generalize, and 
so we develop an algorithm that comes close to minimizing the area. The algorithm 
is simple and utilizes symmetric chain decompositions of the Boolean lattice. We also 
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A A BC c 
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� 
(a) 

A C A C c cl B B 

I c A C A c c D D B D B D 
A A D l D B D B D 

A B ...___ ....__ 
(b) (c) 

c D D 
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E BE E � � E 

C A C A C c c B E BE � B� 
A C A c A C B� B� B D B D B 
A A A c A C A B D B� � B D D D 
A A C C A BE BE 
A B B 

(d) 
Figure 5 (a)-(c) Mark Thompson's congruent n-polyVe n n s  for n = 2 ,  3, 4 and (d) the 
authors' congruent 5-po lyVenn;  in each case, cu rve A i s  h igh l ighted . 

provide asymptotic results that relate the area required by the algorithm's diagrams to 
the theoretical minimum area. We conclude by presenting some open problems related 
to Venn polyominoes and other shape-constrained Venn diagrams. 

Polyominoes. A polyomino is an edge-connected set of unit squares, called cells, 
embedded in the integer lattice. Two cells are adjacent if, and only if, they share a 
common edge. Edge-connected means that every pair of cells is connected by a path 
through adjacent cells. Polyominoes are often classified by area and referred to as 
n-ominoes when they contain n cells. For example, the games of dominoes and Tetris 
are played with 2-ominoes and 4-ominoes (tetrominoes), respectively (see FIGURE 6). 

Polyominoes have been extensively studied and have a wide-range of applications 
in mathematics and the physical sciences [10, 19] .  The problem of counting n-ominoes 
has garnered considerable interest [18, 21, 23] , and although counts up to 56-ominoes 
are known (see sequence A00 1 1 68 [25]) ,  the problem of finding a formula for the 
number remains open. 

Several other subclasses of polyominoes have been defined. Free polyominoes treat 
polyominoes that are translations, rotations, or reflections of each other to be equiv
alent, whereas fixed polyominoes only consider translations as being equivalent. For 
example, FIGURE 6 shows the 1 9  equivalence classes of fixed tetrominoes and 5 equiv
alence classes (a , b, c, d, and e), of free tetrominoes. 

If every column (row) of a polyomino is a contiguous strip of cells, then the poly
amino is called column-convex (row-convex) . A convex polyomino is one that is both 
column and row convex (see FIGURE 7).  No closed-form formula is known for the 
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(c) 

(d) 

(e) 

[pdbq]LEP 
EBWEPdF 
[bccB�EfD 
[fEtodJITB 
Figure 6 A l l  poss i b l e  4-o m i noes (tetrom i noes) 
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number, a(n), of  fixed column-convex n-ominoes; however, P6lya [22] derived the re
currence relation a(n) = Sa(n - 1 ) - 7a(n - 2) + 4a(n - 3) with a( l)  = 1 ,  a(2) = 
2, a(3) = 6, and a(4) = 19 .  This recurrence relation has the rational generating func
tion 

x(l - x)3 
g(x) = -----=----=-

1 - Sx + 7x2 - 4x3 

(see sequence A00 1 1 69 [25]). 
-

,----

- -

(a) column-convex, 

not row-convex 

I 

I 
(b) row-convex, 

not column-convex 

-

I 
(c) convex 

Figure 7 1 D-o m i noes that exh i b i t  d ifferent convexiv i ty p roperties 
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Minimum area n-polyVenns. An n-polyVenn is a Venn diagram comprised of n 
curves, each of which is the perimeter of some polyomino. In particular, each poly
amino must be free of holes in order for the perimeter to be a simple, closed curve, 
and when placed on top of another polyomino, may not partially cover any of the 
bottom polyomino's cells (i.e., the comers of the curves must have unit coordinates). 

Referring to the examples in FIGURE 5, we see that an n-polyVenn can be drawn by 
tracing the curves on the lines of a piece of graph paper; in the (combinatorial) graph 
drawing community, this is referred to as an orthogonal grid drawing [2]. In fact, any 
orthogonal grid drawing of a Venn diagram will produce curves that are the perimeters 
of polyominoes. Since each bounded region must contain at least one cell and there is 
exactly one unbounded region, the minimum area for such a diagram is 2n - 1 cells. In 
addition, since each curve encloses 2n-J regions, it must be the perimeter of at least a 
2n-1-omino. This leads us to the following definition of a minimum area n-polyVenn: 

lo 
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DEFINITION. A minimum area n-polyVenn is an orthogonal unit-grid drawing of a 

Venn diagram with area 2n - 1. 

By necessity, each curve of a minimum area n-polyVenn has area 2n-I. All the Venn 
diagrams in FIGURE 5 are minimum area congruent n-polyVenns. By trial-and-error, 
we have also found minimum area non-congruent n-polyVenns for n = 6, 7 (see Figs. 
8, 9). It is unknown if minimum area n-polyVenns exist for n 2: 8, although we suspect 
there is an upper limit due to the rigid constraints of orthogonal grid drawings. 
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Figure 9 A minimum area 7-polyVenn 
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Orthogonal grid drawings of Venn diagrams were first studied by Eloff and van Zijl 
[8] ; they developed a heuristic algorithm based on a greedy incremental approach. An 
optimization step in the algorithm attempted to reduce the overall area of the diagram, 
but there was no upper bound. In addition, their algorithm produced polyominoes with 
holes, so the resulting diagrams would not be considered Venn diagrams in the formal 
sense (because the sets were not represented by simple, closed curves). 

In the following sections, we present algorithms for approximating minimum area 
n-polyVenns. The first algorithm is trivial and produces n-polyVenns with less than 
3/2 times the minimum area. The second algorithm improves upon the first by us
ing symmetric chain decompositions of the Boolean lattice and produces n-polyVenns 
whose areas are asymptotically minimum (i .e . ,  the ratio of total cells to required cells 
tends to one as n increases). 

There is another definition of area based on the w x h bounding box that contains 
an n-polyVenn; such a box must also have at least one cell to represent the empty set. 
For example, the n-polyVenns in FIGURE 5 are contained by 4 x 1 ,  2 x 5, 5 x 5, and 
7 x 7 bounding boxes, respectively. Since an n-polyVenn must be comprised of at least 
2n - I cells, a bounding box must have area at least 2n . This leads us to the following 
definition of a minimum bounding box n-polyVenn: 

DEFINITION. A minimum bounding box n-pol yVenn is an orthogonal unit-grid 
drawing of a Venn diagram that is enclosed by a 2s x 2' rectangle where s + t = n .  

Of the congruent n-polyVenns i n  FIGURE 5 ,  only (a) i s  a minimum bounding 
box n-polyVenn. FIGURE lO shows some examples of minimum bounding box non
congruent n-polyVenns .  

At present, we leave minimum bounding box n-polyVenns and focus the rest of this 
paper on minimum area n-polyVenns. 

A 3/2-APPROX algorithm. This algorithm is best explained by way of an example. 
Suppose we wish to draw a 5-polyVenn with the curves { A ,  B, C , D ,  E} .  We begin by 
drawing a I x 14  rectangle and labelling it as region ABC DE; in other words, the 
curves are I x 14 rectangles stacked on top of each other. We now place 30 cells 
around the perimeter of ABC DE and uniquely label them with the 30 remaining non
empty regions ;  the result is shown in FIGURE 1 1 .  After adding the perimeter cells, each 
curve becomes a polyomino formed by the original I x I4 rectangle with "bumps" 
wherever the curve encloses a perimeter cell . 

In the general case, this algorithm will produce an n-Venn polyomino beginning 
with a I x (2n- l - 2) rectangle that has a perimeter of 2n - 2 (for the 2n regions less 
the empty and full sets). The resulting diagrams have an area of 2n + 2n- I - 4 which 
is less than 3/2 times the minimum area of 2n - 1 .  

An asymptotically optimal algorithm. The previous algorithm can be significantly 
improved by noting that not all regions need to be placed adjacent to the initial rect
angle; instead, if region X is a subset of region Y, then X can be placed directly above 
or below Y (depending on if Y is above or below the initial rectangle), and the curves 
will remain as polyomino perimeters. This chaining of regions can continue as long 
as the subset property is maintained. FIGURE 1 2  shows an example of 5-polyVenn 
that chains regions as much as possible. Note also that the resulting polyominoes are 
column-convex. 

When regions are chained, a smaller perimeter is needed for the initial rectangle, 
and so the total area of the diagram is reduced. A smaller area diagram is created by 
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A B c D 
AB BC AC AD 
ABC BCD ACD ABD 
ABCI BCDE ACDE ABDE 

l CE lACE ABCDE ADE I DE I 
CDE BCE BDE ABCE 
CD BE BD ABE 

AE 
....__ E � 

Figure 12 An approxi mation for a m i n i m u m  area 5-polyVenn u s i n g  colu m n-convex 
polyominoes and sym metr ic  cha i ns; cu rve A is h ighl ighted 

minimizing the number of chains, so the question arises as to the best way to decom
pose the regions into chains; for this question, we need to use a result from the theory 
of partially ordered sets . 

Given a set S with powerset P(S), we define the partially ordered set (poset) £(S) 
with elements P(S) ordered by inclusion. Since L(S) is closed under union, inter
section, and complement, it is a Boolean lattice. FIGURE 1 3(a) shows an example of 
L({A , B, C, D }). 

Let lSI = n. A symmetric chain decomposition (SCD) of L(S) is a partition of 
S into (Ln7ZJ)) symmetric chains. Each symmetric chain is a sequence of subsets 
x1 , x2 , • • •  , x1 with the following properties : 

xi c xi+l for all 1 .::; i < t ,  

lxd = n - lxr-i+II for alii .::; i .::; It /2l 

( I )  

(2) 

Symmetric chain decompositions form an essential ingredient of the recent proof of 
Griggs, Killian and Savage [11]  that symmetric Venn diagrams exist if and only if the 
number of curves is prime. 

Several algorithms exist for decomposing £(S) into symmetric chains; we describe 
two of these algorithms below. The first, due to de Bruijn, van Ebbenhorst Tengbergen, 
and Kruyswijk [5] is called the Christmas tree pattern by Knuth [20] . It is an inductive 
construction that creates a set Tn of (Ln�ZJ) chains . Initially T1 = {0 C { 1 } } .  To obtain 
Tn from Tn-l , take each chain x1 C x2 C · · · C x1 in Tn and replace it with the two 
chains Xz C · · · C X1 and x, C x, U {n }  C Xz U {n } C · · · C X1 U {n } in Tn+l if t > 1 .  
If t = I the first chain is empty and is ignored. 

A second method, due to Aigner [1 ] ,  can be described as a greedy lexicographic 
algorithm. It is efficient and easy-to-implement, and is the method that we used in 
creating the example diagrams. Let m(x ,  y) be the smallest element in a set x that is 
not in the set y, where m(x ,  y) = - oo if x C y. We say that x is lexicographically 
smaller than y if m(x ,  y) < m(y ,  x) . In Aigner's algorithm, the following process 
is repeated until every element of £ ( { I  , 2 ,  . . . , n }) is contained in some chain. For 
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Figure 1 3  (a) A H asse d i agram of the  poset £({A, B ,  C ,  D)), (b)  one of i t s  sym metr ic  
cha i n  decomposit ions,  and (c) the res u l t i ng 4-pol yVe n n  

k = 0, 1 ,  2 ,  . . .  , n ,  denote by R(k) the set of  subsets of  { 1 ,  2 ,  . . .  , n }  with size k that 
are not yet in any chain. Let j be the smallest value for which R(j) is non-empty and 
let x be the lexicographically smallest set in R(j). The set x becomes the smallest 
set in a new chain x = x1 C x2 C · · · C x1• The successive elements of this chain 
are obtained by taking xi+l E R(i + 1) to be the lexicographically smallest set that 
contains xi. It is by no means obvious that this algorithm is correct, but indeed it is ! 

Because of their subset property ( 1 ), the symmetric chains can be directly used to 
layout the regions of an n-polyVenn. FIGURE 1 3 (b) shows the SCD of £({A , B, C, D}) 
that i s  produced by  Aigner's  algorithm, and FIGURE 1 3 (c) shows the resulting 
4-polyVenn. The 5-polyVenn in FIGURE 1 2  was also produced from Aigner's  SCD of 
£({A , B, C, D, E } ) .  
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In the general case, this algorithm will produce an n-polyVenn beginning with a 
1 x ((Ln�2J) - 2)/2 rectangle that has a perimeter of (Ln�2J) . The resulting diagrams 
have an area of ( (Ln�2J) - 2) /2 + 2n - 2. The lower bound 

(2n) 22n 
n 

< ,JJT(n2 + n/2 + 3/32) 1/4 

[12] can be used to show that the algorithm produces diagrams whose area is 1 + 
0 ( 1 j Jn) times the minimum area of 2n - 1 ;  therefore, as n increases, the approxima
tion gets asymptotically close to optimal . 

Open problems and final remarks. To close the paper, we list some open problems 
that are inspired by the examples in this paper. With the exception of the congruent 
n-polyVenns, the examples in this paper were constructed by hand, and it is very likely 
that relatively naive programs will be able to extend them. Such extension would be 
interesting, but even more interesting would be general results that apply for arbitrary 
numbers of curves.  

1 . Are there congruent n-polyVenns for n ::=:: 6? FIGURE 5 shows that they exist for 
n = 2, 3 , 4, 5 .  

2. I s  there a 5-polyVenn whose curves are convex polyominoes? (The curves in FIG
URE 5 (d) are not both row-convex and column-convex polyominoes.) 

3 .  Are there minimum bounding box n-polyVenns for n ::=:: 6? FIGURE 10 shows that 
they exist for n = 2, 3, 4, 5 .  

4. Are there minimum area n-polyVenns for n ::=:: 8?  FIGURE 9 shows one for n = 7 .  
5 .  One problem for which we have not attempted solutions is the construction of 

n-polyVenns that fill a w x h box, where wh = 2n - 1 .  Of course, a necessary con
dition is that 2n - 1 not be a Mersenne prime. For example, is there a 4-polyVenn 
that fits in a 3 x 5 rectangle or a 6-polyVenn that fits in a 7 x 9 or 3 x 21 rectangle? 

Author 's Note: Since submitting the original manuscript of this paper, Bette Bul-
tena has discovered a 6-polyVenn with an 8 x 8 bounding box (see problem 3 above) .  
FIGURE 8 has also been used to represent the results of experiments in plant genetics 
[4]. 
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Erratum 

Stanley Stephens, Anderson University, Anderson IN 460 1 2  has reported an error 
in the June 2006 issue of this MAGAZINE in the article Dropping Lowest Grades, 
by Daniel Kane and Jonathan Kane, pages 1 8 1- 1 89 .  In the description of the 
Bisection Algorithm appraoch to finding qbest near the bottom of page 1 87 the 
numbers qhigh and q10w were inadvertently interchanged. It should read: 

"If F(qmiddie) < 0, we reset qhigh to qmiddle· Otherwise we reset qlow to qmiddle·" 

In addition, the authors report that they have learned of two related references 
since the article appeared: 

David Eppstein and Daniel S. Hirschberg, Choosing subsets with maximum weighted average, J. Algo

rithms 24 ( 1 997) 1 77-1 93 .  

Robert W. McGrail and Tracey Baldwin McGrail,  A grading dilemma o r  the abyss between sorting and 

the knapsack problem, Journal of Computer Sciences in Colleges 19 (2004) 97- 1 07 .  
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Mom! There's an Astroid in My Closet! 
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R I C H A R D B R A Z I E R  
Pen n  State U n ivers i ty 

DuBoi s  campus 
DuBois, PA 15801 

The knowledge of the world is only to be acquired in the world, and not in a 
closet. 

-Lord Chesterfield, from Letters to His Son ( 1 694-1 773) 

Introduction 

All children know that there are mysteries, sometimes frightening mysteries, hidden 
in closets . Adults often brush this aside as the result of an overactive imagination. 
But perhaps we should take a second look. Perhaps it is our imaginations that are 
underactive. If you have a closet (or any doorway) covered with a bifold door there is 
an astroid lurking just inside and the only way you can get to it is to coax it carefully 
with a little bit of calculus.  If your door has more than one fold there are even more 
interesting objects waiting to be discovered. 

This investigation began when one of the authors (Seiple) was standing at his closet 
wondering how much floor space was needed to accommodate the opening and closing 
of the bifold door mounted on it. He was supposed to be getting dressed for school, 
but he was in high school at the time so perhaps he can be forgiven. When he arrived 
at college he described the problem to Boman and Brazier who encouraged him to 
investigate the problem using the calculus tools he was learning at the time. This article 
is the result of his investigations .  

Notice that if  a closet of width r has a door mounted as  in FIGURE 1 (we will call 
this the standard mounting) then opening (or closing) the door requires 1r;2 square feet 
of floor space be kept clear of obstacles. Adults might be able to do this but it can be 
an onerous task for a teenager. 

This would seem to be the end of the story except that a survey of your closets will 
quickly convince you that the standard mounting is actually relatively rare on closet 
doors . 

Our (admittedly unscientific) survey of all of the closets we have easy access to 
convinces us that most of the closet doors in the United States which do not use the 
standard mounting use a bifold mounting which we discusss next. 



VO L.  80, NO. 2 ,  APR I L  2 00 7  105 

Closet interior 

Figure 1 The floor space requ i red for a standard door is the fu l l  quarter-c i rc l e .  A b ifo l d  
door requ i res su bstant i a l l y  l ess, b u t  how m u c h  l ess? 

Bifold doors 

Many closet doors do not have ample room for a standard mounting, therefore to save 
floor space closet doors are often bifold doors as shown in FIGURE 2. That is, the door 
is broken and hinged in the middle so that each panel is r /2 in length. This allows the 
door to be mounted in a manner similar to the standard mounting we described earlier 
except that only the left panel sweeps out a quarter-circle. The inner edge of the left 
panel of the door is fixed at the point A and the outer edge of the right panel is allowed 
to slide along the track. 

A Closet interior 
Figure 2 Th i s  figure shows the v i ew from above a b ifo l d  door as the door c l oses . It fi rst 
sweeps out the area u nder the c i rc u l ar arc of rad i u s  rj 2 ,  but when (} reaches n/4 the 
natu re of the cu rve changes.  Not ice that "bifo l d" i s  a m i snomer. There i s  o n l y  one fo l d .  

To begin, consider a bifold door starting in  the fully open position and closing to 
the right as in FIGURE 2. The floor space required to close the door is enclosed by the 
curve we' ll call �(8) and the x and y axes .  

I t  is clear that � has two distinct components. The first is simply the circular arc 
swept out by the left panel of the door as e proceeds from n /2 to n I 4. However when 
e = n /4 the nature of � changes .  At this point the right panel of the door is tangent to 
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the circular arc. Thus the entire quarter-circle swept out by the left panel of the door is 
enclosed in the area which has already been swept out. Moreover as the door continues 
to close, more area outside the quarter-circle continues to be accumulated. 

We seek a parameterization of the outer envelope of this area. 
To that end, assume that the door is opening as in FIGURE 3 and that 0 :-::= (} :-::= TC /4. 

Notice the change here . For the development we are about to present, it is easier to 
think of the door as opening rather than closing . In either case He) is unchanged. 

(r cos(8), 0) 

? 
(r cos(8 + 68), 0)� 

Figure 3 When e i s  i ncremented by !J.e the or ig i na l  pos i t ion of the r ight panel  of the 
door and i ts new pos i t ion wi l l  i ntersect. The point of i ntersection at P gives an approxi
mate parameter ization of the cu rve �(8). As !J.e --+ 0 th i s  becomes exact. 

We increment (} by f:..(} and consider the position of the right panel of the door at 
(} and (} + f:..(). If we can find the coordinates of the point P we have an approximate 
parameterization of the curve �. If P = (x p, y P) for a fixed f:..() then it is clear that 

is the parameterization we seek. 
Let L 1 be the line of the right panel at () and let L2 be the line at () + f:..() and 

observe that the slopes of L1 and L2 are - tan() and - tan(() + �!!..()) , respectively. 
Thus the equation of L 1 is 

y = - tan()(x - r cos()) 

and the equation of L2 is 

y = - tan((} + f:..()) (x - r cos (() + f:..()) . 

Combining equations 1 and 2 we get 

( sin(() + �!!..()) - sin() ) 
Xp = r 

tan(() + f:..()) - tan((}) · 
Putting this back into either L1 or L2 gives 

= -r tan() - cos() . 
( sin(() + f:..()) - sin() ) 

y P 
tan(() + �!!..(}) - tan((}) 

Taking the limit as f:..() -+ 0 we get 

( 1 )  

(2) 



VO L.  80, NO. 2 ,  APRI L 2 00 7  

x = hm r . ( sin (e + !3.e) - sin e ) 
M-+O tan(e + !3.e) - tan(e)  

- r lim M 
( sin(li+61i)-sinli ) 

-
61!-+0 tan(li+6:J-tan(li) · 
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Observe that the numerator and denominator of the formula above are just the deriva
tives of sin e and tan e respectively. Thus 

Similarly 

cos e 
x (e)  = r--2 - = r cos3 e .  

sec e 

Thus a parameterization for the outer envelope of the floor space used by a bifold 
door is given by: (r cos3 e) 

ifo:::: e :::: n/4 
r sin3 e 

�(e) = (3) (rj2 cos e) 
if n /4 :::: e :::: n 1 2  

rj2 sin e 

Notice that letting e move from 0 to 1r /2 opens the door while letting e move from 
Jr /2 to 0 closes it. To compute the area of the floor space required we need to ensure 
that we integrate from left to right. The area of the floor space is then given by 

111=0 111=0 dx 11i=n/4 dx 
y (e) dx = r sin3 (e) -de + rj2 sin e-de 

li=rr/2 li=rr/4 de li=rr/2 de 

l
rr/4 1nj2 

= 3r 2 sin4 e cos2 e de + r
2 /4 sin2 e de 

0 Jr� 

5nr 2 

64 

So our initial question is resolved. If a closet r feet wide is covered by a bifold door 
5�;2 square feet of floor space is required to accommodate the door. If the same closet 
is closed with an ordinary door then Jr r2 I 4 square feet are needed-a savings of nearly 
70%. 

Adding door panels 

It is clear that adding 2, 3 ,  4, or n folds will reduce the floor space required even further. 
FIGURE 4 shows the situation with 2 folds. If the doors are hinged so that the angles 
denoted by e in FIGURE 4 are always equal then the problem can be approached in the 
same manner as before as we now show. 
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A s  before w e  perturb e by !:l.tJ and consider the point of intersection of the rightmost 
panels in FIGURE 4. In that case the equation of L1 is (again): 

y = - tan tJ(x - r cos tJ) 

and the equation of L2 is (again): 

(0, r/4) 

y = - tan(tJ + !:l.tJ) (x - r cos (tJ + !:l.tJ) ) .  

(r cos(8), 0) 

Figure 4 Each door panel  has length rj 4 .  

Since these are exactly the same equations we found in the previous section i t  fol
lows that the parameterization we seek is (again) the astroid: 

(r cos3 e) 
r sin3 e . 

Indeed it should be clear from the above that adding more hinges has no effect 
on the astroidal portion of the curve. The very same astroid appears regardless of the 
number of folds in the door as long as all of the panels are hinged so that they make 
the same angle with the front of the closet (the angle e in FIGURE 4). This assumption 
is critical . If the angles are allowed to differ the problem becomes considerably more 
complex. 

Recall however that the curve �(8) from the previous section had two components. 
The other portion was the circular arc traced out by the point corresponding to Q in 
FIGURE 4. To find the corresponding portion for the current curve, which we' ll denote 
by �2 (8) ,  we need to parameterize the coordinates of the point Q. 

Referring again to FIGURE 4 it is clear that 

Q(tJ) = 
(3rj4�ose) 

rj4sme 

and that the transition between the components of the curve occurs when P (tJ) = 
Q(tJ) , or when e = n j6. Thus when we have two folds in our door the curve �2 (8) is 

(rcos3e) ifO ::=:: e ::=:: rr/6 
r sin3 e ' 

(3r f4 cos e) if n 16 ::::: e ::::: n 12 
rj4sine ' 

and in the general case, with n folds, the curve is 
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�n (e) = 

(r cos3 e) 
r sin3 e 

, ( (2n;,l)r cos e) 
{;; sin e 

, 

if 0 < e < cos- ' ( Zn- l ) - - 2n 

if COS- I ( Zn- l ) < 0 < rr/2 2n - -
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It seems curious that the same curves, an ellipse and an astroid, appear regardless of 
how many panels we split our door into. Indeed, the same curves appear in the two-fold 
(four panel) case even if the panels are of two distinct sizes. 

By now the calculation is very familiar so we will not belabor it. Consider the 
arrangement depicted in FIGURE 5 .  Again we have two folds (four panels) but they are 
no longer the same length and we have normalized the sum of the lengths of the panels 
to 1 .  If we perturb the angle e by t:J.e and find the intersection point p (not shown 
in the figure) between the original location of the rightmost panel and its perturbed 
location we find that the equations of L 1 and L2 are again precisely the same as in our 
first problem. Thus the astroid emerges exactly as before. Moreover it is easy to show 
that a parameterization of the point Q in the figure is: 

which is again an ellipse. 

Q (B) _ (( 1 /2 + a) cos e) - ( 1 /2 - a) sin e 

Q 
1/2 - a  

1 /2 - a  

Figure 5 A b ifo l d  door with d ifferent length pane l s  a l so generates an astro i d  and  e l l i pse.  

It seems very odd that the same curves keep emerging no matter how we try to 
generalize the problem. 

Wiles' light switch 

Andrew Wiles [5] has likened mathematics research to walking into an unlighted room. 
At first all is dark. As you fumble around you begin to get a sense of the location of 
the objects in the room and the relationships between them. Eventually, if you are 
lucky, you find the light switch and flip it. Then you see all of the structures and the 
relationships between them that you were already familiar with as well as new ones 
that you were only dimly aware of or may not have known at all . 

In this section we will flip the light switch for this problem. It turns out that the 
relationship between ellipses and astroids , which has been our common theme, has 
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been known since antiquity. Archimedes used it to create a mechanical device, known 
as the "Trammel of Archimedes," for drawing ellipses (see [1,  2, 3]) .  

Consider the following alternate construction of the astroid [4, 6] . We begin with 
vertical line segment whose endpoints are at (0, 1 )  and the origin (see FIGURE 6). 
Keeping the length of the segment constant we move the endpoints vertically toward 
the origin and horizontally toward ( 1 ,  0), respectively. The outer envelope of the region 
thus constructed is the astroid. 

open 
door 
� 

D 

B 

A 

closet interior 

Figure 6 As the door c loses poi nts A and 8 move toward poi nts B and C, respect ive ly. 

Rather, it is one quarter of the classical astroid of antiquity. This is the portion we 
have seen so far. If we continue in the same fashion-moving the left end of our line 
segment vertically to (0, - 1 )  and the right end horizontally back to the origin-we will 
generate the same curve reflected about the x-axis .  Continuing in the same vein until 
our line segment has returned to its original position gives the full astroid of antiquity 
as it was known to Archimedes.  This is shown in FIGURE 7. 

(0, 1 )  

(0, I )  

Figure 7 One way to defi ne the astro i d  i s  a s  the outer envelope of a part icu la r  set of 
e l l i pses as shown here. A b i fo l d  door is shown schemati ca l l y  i n  the fi rst q u ad rant.  
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FIGURE 7 also displays the astroid as the outer envelope of a particular set of el
lipses. If we fix a point D on our original line segment (see FIGURE 6) between (0, 1 )  
and the origin and follow it as w e  trace out the astroid then i t  i s  easy to show that the 
path it follows is an ellipse. 

It seems that as our folding doors close the peak of the rightmost fold (the point Q 
seen in figures 4 and 5) traces out one of these ellipses (the elliptical portion of the 
curve l;n ((1) )  until it touches the astroid. At that point the rightmost panel of the door 
is tangent to both the ellipse and the astroid and our l;n (8) switches modes and begins 
to follow the astroid. 

You can 't have a light without a dark to stick it in. 
-Arlo Guthrie ( 1 947- ) 
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The Hawkins Random Sieve 

J O H N L O R C H  
Ball State U n ivers i ty 

Munc ie, I N  4 7306 
jlorch®bsu.edu 

G I R A Y  O K T E N  
Flor ida State U n ivers i ty 

Tallahassee, FL 3 2 3 06 
okten@math . fsu.edu 

While prime numbers are the fundamental building blocks of the integers, understand
ing how they are spread within the integers has turned out to be hard work. For ex
ample, the Prime Number Theorem stood as a conjecture for nearly a hundred years, 
and anyone who bags the Riemann Hypothesis first will be a million dollars richer. 
Modem cryptography assumes that the primes will retain their secrets for some time 
to come. 

In the presence of hard problems, it is tempting to employ models. A good model 
should provide an approximation of reality which is simple enough to understand, yet 
accurate enough to be useful. While there are several models for the primes, in this 
paper we tell the story of a beautiful and compelling probabilistic model known as 
the Hawkins primes. First introduced by David Hawkins in this MAGAZINE [11 ] ,  the 
model is based on a simple variation of the sieve of Eratosthenes.  Over the past fifty 
years, the Hawkins model has been used to predict the truth, in the strongest proba
bilistic sense, of results (both established and conjectured) concerning the distribution 
of the prime numbers, including the Twin Primes Conjecture and the Riemann Hy
pothesis .  Also, the model (or generalizations thereof) has potential to shed light on 
interesting integer sequences other than the primes.  

The H awkins model: Fishing for primes 

In addition to computing the circumference of the earth, Eratosthenes of Cyrene (276-
1 94 BCE) taught us to sieve primes. To employ his sieve, recall that we start with all 
natural numbers two and larger, and identify p1 = 2 as our first ' sieving number.' We 
sieve (remove) from our list all higher multiples of p" and identify p2 as the smallest 
surviving number larger than p1 (of course p2 = 3) .  In the second step, we sieve from 
our remaining list all higher multiples of the sieving number p2 , and identify p3 as the 
smallest surviving number which is larger than p2 • Continuing the process, we produce 
a list P = {p 1 , p2 , . • .  } of sieving numbers which are precisely the primes. 

To produce a list of Hawkins primes, we randomize the sieve of Eratosthenes. As 
before, we start with all natural numbers two and larger, and identify h 1 = 2 as our first 
' sieving number.' In the first step we independently sieve numbers from our list with 
probabi l ity 1 /  h "  and identify h2 as the smallest surviving number greater than h 1 • In 
the second step, we sieve numbers from our remaining list with probability 1 /  h2 , and 
identify h3 as the smallest surviving number which is larger than h2 • If we carry on 
with the process, we produce a list H = {h 1 , h2 , • • .  } of sieving numbers which we 
call a set of Hawkins primes. (A computer program producing lists of Hawkins primes 
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may be desirable for simulation purposes, or just for fun. See www . c s . bsu . edu/ 
homepages/ j dlorch/preps . htm for an example in Mathematica. )  

One of the first things we observe about the Hawkins random sieve (as opposed to 
the sieve of Eratosthenes) is that it is non-deterministic. That is, each time we run the 
random sieve, we almost surely obtain a different list H of Hawkins primes . In fact, 
every strictly increasing sequence of natural numbers beginning with 2 is a possible 
(though not necessarily likely) list of Hawkins primes. At first this non-determinism 
seems exceedingly complex, standing in direct opposition to the principle that a model 
should be simpler than the object it represents . After all, we have traded in our prob
lematic 'tree' of real primes for a whole 'forest' of Hawkins primes .  However, upon 
closer inspection we see that the Hawkins model has significant virtues. Importantly, 
the whole notion of divisibility, the testing of which is complex and time-consuming, 
is swept aside in favor of random elimination. Further, the large number of possible 
lists of Hawkins primes is advantageous from a probabilistic standpoint. Here 's  the 
idea: Imagine the set of 'real ' primes to be an individual fish among a school of fish. 
The primes are too smart to be caught with hook and line, but if we net nearly all of 
the fish, then there is a good chance we have netted the primes as well. The moral is 
that any conclusion one can draw about nearly all sets of Hawkins primes will likely 
be true for the 'real ' primes.  We will see later that this approach has been fruitful. 

Is the model reasonable? 

For the Hawkins primes to be a believable model, it seems reasonable to expect them 
to resemble the 'real ' primes fundamentally. Here we focus on two important ways in 
which the Hawkins primes are similar to the real primes. 

Density. The Prime Number Theorem ( 1 896, Hadamard and Valee Poussin) is per
haps the best-known established result concerning the distribution of primes.  It says 
that the number of primes less than or equal to n (denoted rr (n) )  is approximately 
nj log n, in the sense that rr (n ) [n - 1 log n] --+ 1 as n --+ oo. The weakness of this ap
proximation theorem says a Jot about the difficulty of prime distribution problems. 

Locally, the Prime Number Theorem implies that for large integers n, the probabil
ity that n is prime is approximately 1 / log n. Hawkins [11 ]  showed that an analogous 
local result holds for Hawkins primes :  Letting Sn denote the event that a natural num
ber n > 2 is a Hawkins prime, and P (Sn ) the probability that Sn occurs, we have 

THEOREM 1 .  P (Sn ) log n --+ 1 as n --+  oo. 

Therefore, the Hawkins primes have (more or less) the same density in the natural 
numbers as the 'real ' primes. 

A proof of Theorem 1 ,  which is very tersely sketched in [11 ] ,  requires only elemen
tary calculus and probability. We first establish the recursion 

( 1 ) 

which, with Tn denoting the event complementary to Sn , is equivalent to 

(2) 
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To obtain (2) we observe 

(3) 

and use elementary facts about conditional probability together with the definition of 
the sieve to show 

and 

The results of (3) and (4) together imply (2). 
Next, if we put 8n = 1 /  P (Sn ) ,  then using ( 1 )  we obtain 

Therefore, 

1 1 
= 8n + - + ----::-2---n n 8n - n 

n2 g� - ngn + ngn - 1 + 1 
n2gn - n 

Since the righthand-most sum in (5) converges as n --+ oo, from (5) we have 

lim P (Sn ) log n = lim g;; 1 log n = lim g;; 1 ["" �] = 1 ,  n-+oo n-+oo n--;.oo � k k�n 

concluding the proof. 

(4) 

(5) 

Interdependence. In 1 937, Cramer [4] introduced a simple (and today widely 
known) model for the primes which assumes the local version of the Prime Number 
Theorem mentioned above. Consider an infinite collection of urns U2 , U3 , • • •  contain
ing black and white balls,  such that a random draw from Un will result in a white ball 
with probability 1 /  log n .  Upon drawing balls, the numbers of those urns from which 
a white ball was selected form a sequence of Cramer primes. 

Observe that in Cramer's model, the probability of selecting a white or black ball 
from Un does not depend on the selections made earlier. However, this assumption 
of independence does not appear to be consistent with the behavior of the primes. 
For example, for the event "n is a prime number" the number of prime numbers less 
than ,Jli may affect the probability of this event. (We can argue that if there are more 
than the expected composite numbers between 2 and ,Jli, then the probability that "n 
is a prime number" should be larger, since there are fewer potential prime divisors .) 
Hawkins' model takes a first step in incorporating the interdependency of prime num
bers . Since each sieving number n eliminates subsequent numbers with probability 
1 / n ,  clearly the probability that an integer m is a sieving number (that is, a Hawkins 
prime) depends on the sieving numbers less than m.  

Fis hing revisited: A sam pler of applications 

Here we present a short chronological sample of some ways in which the Hawkins 
model has been used to investigate the primes and other interesting sequences. While 
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no details are provided, perhaps it suffices to say that in almost every instance the 
game plan is to use limit theorems from probability (along the lines of the Strong Law 
of Large Numbers) to make statements that will be true in the strongest probabilistic 
sense for sets of Hawkins primes. (Our collection of applications is not comprehensive. 
For example, we omit the connections with diffusion and Brownian motion addressed 
in [20] and [6] , respectively. ) 

For later use we declare Pn to be the nth 'real ' prime and hn to be the random 
variable giving the nth Hawkins prime. For real-valued functions f, g on IR, we write 
f '"" g whenever f (x)fg(x) -+ 1 as x -+ oo. (y/e say f is asymptotic to g . )  Finally, 
an event occurring with probability 1 is said to occur almost surely. (We let a. s. stand 
for almost surely. Recall that an event occurring with probability 1 is not necessarily 
certain to occur ! )  

Lucky numbers. Perhaps surprisingly, one of  the earliest applications of  the 
Hawkins model was not to the primes, but rather to the lucky numbers. First introduced 
in 1 956 by Ulam et al [8] , the lucky numbers are given by a sieving process similar 
to the sieve of Eratosthenes. One begins with the sequence L2 = 2, 3 ,  5 ,  7 ,  9, . . .  , 
and, given that Ln has been defined and that tm ,n is the nth element of Lm , we 
obtain Ln+l by crossing out every tn ,n th element from Ln . The lucky numbers 
L = 2, 3, 7, 9, 1 3 ,  1 5 ,  2 1 ,  . . .  are obtained from Ln by letting n tend to infinity. 

Based on Theorem 1 ,  Hawkins conjectured that 

ln '"" n log n and 
1 

an '"" --log n 

where ln denotes the n-th lucky number and an = ( 1  - 1 /2) ( 1  - 1 /3) . . .  ( 1  - 1 /  ln ) .  
These lucky number analogues of the Prime Number Theorem and Mertens '  Theorem, 
respectively, were later proved by Hawkins and Briggs [3] (see below for more on 
Mertens'  Theorem). 

Strong probabilistic versions of PNT and Mertens' Theorem. If rrH (n) denotes 
the random variable counting the number of Hawkins primes less than n in a set of 
Hawkins primes, then it follows immediately from Theorem 1 that the expected value 
of TlH (n) is asymptotic to n f log n .  However, in the 1 970's Nuedecker and Williams 
[18] , as well as Wunderlich ( [21] ,  [22]) ,  were able to obtain much stronger probabilis
tic results : 

THEOREM 2 .  TlH (n) '"" n f log n a.s .  and fl( l - l f hk ) - 1 '"" log n a.s .  
k�n 

The first result of Theorem 2 is a strong probabilistic version of the (global) Prime 
Number Theorem, while the second result is an imperfect analogue of Mertens ' The
orem. Understanding Mertens ' Theorem begins with the fact (due to the Fundamental 
Theorem of Arithmetic) that 

00 1 00 L ms = fl<l - 1 /PD- 1 
m= l k= l 

for s > 1 .  (6) 

The key question is :  What analog of (6) holds at s = 1 ?  In light of (6), we are tempted 
to compare the growth of the partial products in the right side of (6) to the partial sums 
of the harmonic series. Since log n '"" Lm<n .l, a first guess might be - m 

fl0 - 1 /pk) -1 '"" log n ,  
k�n 
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and this is precisely what is predicted by the Hawkins model in Theorem 2 . Unfortu
nately, this prediction is off by a factor of eY , where y is Euler's constant. The reason 
for the discrepancy is that the Hawkins model is blind to divisibility, and it is this spe
cial nature of the primes which gives rise to the tantalizing constant eY in the correct 
version of Mertens ' Theorem: 

n ( l - l lpk ) - 1 � eY log n .  
k:Sn 

(See Section 1 . 8 of [7] for a proof of Mertens ' Theorem.)  

The Riemann Hypothesis is true! Well, almost surely • • • It  is natural to won
der what the Hawkins model has to say about open problems on the primes.  Among 
these open problems, there is none more famous than the Riemann Hypothesis. Using 
tables, Gauss observed that the logarithmic integral function Li (n) = f2

n 10� 1 dt does 
a fairly good job of counting primes. (For us this shouldn' t  be too surprising; we 've 
seen that the density function for the primes is approximately 1 I log n .  Integration by 
parts indicates Li (n) has nl log n as a leading term, so the Prime Number Theorem 
can be rephrased as ;rr (n) � Li (n) .) If the logarithmic integral Li (x) did a perfect job 
of counting primes, then Li (Pn ) would be n on the nose. However, Li (x) is merely an 
approximation, and the Riemann Hypothesis (first formulated by Riemann in 1 859) is 
principally a conjecture about the growth of the associated error term Li (pn ) - n. It 
states 

for every E > 0. 

In the 1 970's and 80's,  several strong probabilistic results cropped up in favor of the 
Riemann Hypothesis .  Williams [18] showed that the Riemann Hypothesis is true al
most surely for the Hawkins primes, and further improvements on the error term have 
been given by Heyde ( [13] , [14]) and Deheuvels [5] . Van der Poorten [19] finds this to 
be the most compelling evidence in favor of the Riemann Hypothesis. 

Our investigation of open problems need not end with the Riemann Hypothesis. For 
example, Gauss and Riemann believed that ;rr (n) < L i (n) for all n ,  so it was a surprise 
when Littlewood showed that ;rr (n) - Li (n) must change sign infinitely often. It is un
known exactly where ;rr (n) - Li (n) first changes sign, although Bays and Hudson [2] 
give an upper bound of n � 1 .39 x 1 03 1 6 •  Nor is the original Hawkins model of much 
help: Ingredients in the proof of Theorem 1 imply P (Sn ) < 1 I log n for all n, so the 
model incorrectly predicts that ;rr (n) ::; Li (n) .  However, conjectures about the sign of 
;rr (n ) - Li (n) can be made using the square-root model. First introduced by Hawkins 
in [12] , the square root model consists of the original Hawkins model together with 
the added condition that a sieving number n only strike out numbers larger than n2 • 
Overall ,  this has the effect of raising the probability of primality. In 1 998, Mahajan 
[16] used the theory of delay differential equations to show that the probability that n 
is 'prime' in the square-root model oscillates around l f log n ,  and, using leading terms 
of her solutions, conjectured that ;rr (n) - Li (n) first changes sign around n = 1 027 •  

A generalized Hawkins sieve and prime k-tu ples 

Mahajan 's work on the sign of ;rr (n) - Li (n) shows that making alterations to 
Hawkins ' original model can be a smart thing to do. In this section, we show that cer
tain adjustments to the model yield results bearing resemblance to those for the original 
model, and provide the opportunity to investigate various interesting sequences . 
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Expanding your probabilities : A generalized sieve. In Hawkins ' original model, a 
sieving number n (i .e . ,  a Hawkins prime) sieves subsequent numbers with probability 
p (n) = 1 /n . A simple way to generalize the model is to allow p (n ) to vary. Sequences 
generated by p (n)  will be called Hawkins p-primes. Given certain conditions on the 
decay of p (n)  (see [15]),  several asymptotic results hold for the general model which 
are reminiscent of those for the original . For instance, letting Sn denote the event that a 
natural number n > 2 is a Hawkins p-prime, and P (Sn ) the probability that Sn occurs, 
we have the following density result parallel to Theorem 1 :  

THEOREM 3 .  If "'£  p2 (k) converges while "'£ p (k) diverges, then 

P (Sn ) "'  (L P (k)) - 1 

k:Sn 

With further conditions on the decay of p (n)  and quite a bit more effort, [15] pro
vides strong probabilistic analogs of the Prime Number Theorem and Mertens ' Theo
rem paralleling Theorem 2. Specifically, if we let Hn denote the nth Hawkins p-prime, 
Yn = Ok<n ( l - p (Hk) ) - 1 , and I (t) = J; p (t)  dt , then we have 

1 
THEOREM 4 .  -Hn "' Yn "' I (Hn ) a.s .  provided that p (t) decays 'appropriately. ' n 

Here, the asymptotic equivalence n- 1 Hn "' I (Hn ) is an analogue of the Prime Number 
Theorem, while Yn "' I (Hn ) is an analogue of Mertens '  Theorem. An application of 
Theorems 3 and 4 is given below. 

Application to prime k-tuples. A pair Pk . Pk+ 1  of consecutive primes with Pk+ 1  -
Pk = 2 forms a set of twin primes. The Twin Primes Conjecture asserts the infinitude 
of the twins along with the asymptotic formula 

n t (n) "' C-- , 
log2 n 

where t (n) is the number of sets of twins less than n ,  and C is a constant. 

(7) 

The asymptotic formula (7) is commonly motivated using Cramer's model: Natural 
numbers n and n + 2 are both prime with probability 

1 
,-----...,------,-------,,..,- :::::::: (1 og n) -2 • 
log n · log(n + 2) 

Compiling these probabilities we guess that t (n) :::::::: n log-2 n .  Hardy and Littlewood 
[10] have conjectured that the constant 

c = 2 n p (p - 2) 
( 1 ) 2 ' p>2 
p -

and Neudecker [17] showed that the Twin Primes Conjecture (with C = 1 )  is true 
almost surely for the Hawkins primes. 

There is a generalization of the Twin Primes Conjecture called the k-Tuple Conjec
ture. Given natural numbers 0 < a 1 < a2 · · • < ak- t . the k-Tuple Conjecture asserts 
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that the number of primes p :::: n such that each of p ,  p + 2a1 , • • •  , p + 2ak- l is prime 
approaches 

Ca 1 , . . .  , ak - 1  n 
logk n 

asymptotically, where Ca 1 ,  . . .  , ak_ 1 is a constant depending on a1 , • . •  , ak_ 1 , and where we 
assume that there are no divisibility conditions preventing all of p ,  p + 2a1 , • • •  , p + 
2ak- l from being prime infinitely often. (For details, including specific values for 
Ca 1 , . . .  , ak - l , see [9] . )  

We can use the generalized Hawkins sieve to  model k-tuples. If in  Theorem 3 we 
set p (n )  = n - 1 1ogk n for some fixed positive integer k, then 

(k + 1 )  P (Sn ) = 
k+ l . 

log n 

This is (more or less) the conjectured asymptotic density of sets of the prime (k + 
I ) -tuples. So, the probabilities p (n) = n - 1 logk n provide us with a reasonable new 
sieving model for prime (k + I ) -tuples. Further, by applying Theorem 4 with these 
sieving probabilities, we obtain 

n Hn � -- logk+ 1 n a.s .  
k + l  

and 
1 

Y � -- logk+ l n a. s . ,  n 
k + 1 (8) 

which are strong probabilistic analogs of the Prime Number Theorem and Mertens '  
Theorem, respectively. The asymptotic formula for Hn in  (8 )  translates to a strong 
probabilistic version of the k-Tuple Conjecture. 
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A permutohedron is a geometric object whose vertices are the n ! points in Rn con
sisting of ( 1 , 2 ,  3 ,  . . . , n) and all points obtained by permuting the coordinates of this 
point. Consider all possible Euclidean distances between the vertices of a permutohe
dron. Now square each distance. It is rather easy to see that the square of any distance 
is even . What is surprising is that for n ::: 4, the squared distances constitute every even 
integer up through the maximum possible value. 

Pol ytope infatuation 

A permutahedron is an example of a convex polytope. Convex polytopes have been 
studied since ancient times [6] . Plato considered the five regular polytopes, tetrahe
dron, cube, octahedron, icosahedron and dodecahedron as ingredients from which the 
world was constructed [5] . Later in this century, physicists made a similar conjecture 
when considering the symmetry in equations of quantum mechanics [8] . Convex poly
topes have provided an area where combinatorics, geometry, topology and optimiza
tion interact [4] . It is not surprising that permutahedra were among the topics of one 
of the talks given in honor of Richard Stanley' s  60th birthday [7] . Convex polytopes 
continue to attract our curiosity [3] . 

Geometry of a perm utohedron 

Consider the permutohedron whose vertex set is P3 = { ( 1 ,  2, 3 ) ,  ( 1 ,  3 ,  2) , (2, 1 ,  3 ) ,  
( 2 ,  3 ,  1 ) ,  (3 , 1 ,  2) , (3 ,  2 ,  1 ) } ,  viewed as  points in  R3 . I s  there anything geometrically 
interesting about them? After a little thought, it is easy to see that they all lie on the 
plane x + y + z = 6. In fact, they lie on the intersection of this plane and the sphere 
x2 + y2 + z2 = 1 4, that is, they lie on a circle in 3-space. Moreover, the points in P3 
are the vertices of a regular hexagon inscribed in the circle. 

As just observed, the six points in P3 resulting from the six permutations of 1 ,  2 and 
3 provide some interesting geometric properties. The points in P3 are the vertices of 
a regular hexagon inscribed in a circle, a 20 object, residing in 3-space. Consider the 
analogous situation for P4 , the set of 4-tuples corresponding to the 24 permutations of 
1 ,  2, 3 and 4. 

FIGU RE 1 shows the resulting geometric object, referred to as a permutohedron 
in Berge [2, p. 1 36] . A permutohedron is inscribed in a sphere, whose vertices are 

12 0 
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342 1 

34 1 2  

Figure 1 Permutohed ron with 4 !  = 24 verti ces 

12 1 

2 1 43 

2 1 34 

4-tuples. A permutohedron can therefore be considered as a 3D object residing in 
4-space. The vertices of the permutohedron belong to the intersection of the hyperplane 
x + y + z + w = 1 0  and the 4-sphere x2 + y2 + z2 + w2 = 30, that is ,  they lie on a 
sphere residing in 4-space. 

In general, if Pn is the set of points in n-space corresponding to the n! permuta
tions of 1 ,  2, 3 ,  . . .  , n ,  they form the vertices of a permutohedron and they lie on the 
intersection of the hyperplane 

and the n-sphere 

n (n + 1 )  
X] + Xz + X3 + · · · + Xn = 

2 

2 2 2 2 n (n + 1 ) (2n + l ) 
xI + Xz + x3 + . . .  + xn = 

6 

That is ,  they lie on a n - 1 sphere residing in n-space. 

Neigh borhoods 

Let u = (u J ,  Uz , u 3 ,  . . .  , Un )  and v = (vJ , Vz , V3 , . . .  , Vn ) be two vertices in Pn . 
The Euclidean distance d (u ,  v) between u and v is defined in the usual way as 
d (u ,  v) = JI:7=1 (u;  - v; ) 2 • If E 2: 0 a E -neighborhood N (u ,  E )  of vertex u is the 
set of vertices N (u ,  E)  = { v E Pn I d (u ,  v) ::=: E } .  The vertices of P4 in FIGURE I 
were labeled so that the more distant one is from a given vertex, the larger the E 
neighborhood. Examples o f  E -neighborhoods include N ( 1 324, E )  = { 1 324} for 0 ::=: 
E < v'l, N ( 1 324, E )  = { 1 324, 1 234, 23 14 ,  1 423}  for v'2 ::=: E < A, N ( I 324, E )  = 
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{ 1 324, 1 234, 23 14 ,  1423 , 24 1 3 }  for J4 .::::: E < ./6, 
JV ( l 324, E )  = { 1 324, 1 234, 23 14 , 1 423 , 24 1 3 , 1 243 , 2 1 34, 3214 ,  1432} 

for ./6 .::::: E < .J8, etc . The expressions J4 and .J8 were purposely not simplified to 
2 and 2-/2 to reveal a pattern. 

Now imagine standing on any vertex u of a permutohedron, like the one in FIG
URE 1 .  Looking around at neighboring vertices within an E -neighborhood the view 
would be the same. There would be n - 1 "adjacent" vertices (here vertex v is adja
cent to u if d(u , v) = -/2) evenly distributed around the observation vertex. Moving 
to another observation vertex yields the same view. The number of vertices and their 
relative positions within an E-neighborhood looks exactly the same. The fact that the 
E -neighborhood is independent of the observation vertex is part of exercise 14 in [1 ,  p. 
25] .  This exercise provided a starting point for examining and counting distances be
tween vertices in a permutohedron. However, rather than using the metric in exercise 
14 the more familiar Euclidean metric was used. 

Squared distances m u st be even 

Before showing that the squared distances between the vertices of a permutohedron 
constitute all even integers up to a maximum, you are invited to convince yourself 
why the values are, in fact, even. The following two facts, whose verifications are left 
for your enjoyment, show that the squared distances must be even. 

FACT 1 .  If {d1 , d2 , d3 , • • •  , dn } is a set of integers such that "'£7= 1 d; = 0 then 
"'£7 = 1 d? is an even integer. 

FACT 2 .  If X = {x 1 , x2 , x3 , . . •  , Xn } is a set of real numbers, 

is a permutation of the elements of X and dj = x j - X; j for 1 .::::: j .::::: n then 

That the squared distance between two vertices of a permutohedron is an even integer 
is an immediate consequence of the above two facts. 

Inversions of a perm utation 

Let Sn be the set of permutations of lVn = { 1 ,  2, 3 ,  . . . , n } .  The approach to deriving all 
distinct distances between vertices was to define the notion of an inversion difference 
for the set of inversions of a particular permutation f of Sn . First, recall the definition 
of an inversion of a permutation. 

DEFINITION 1 .  Let f = (a 1 , a2 , a3 , • • •  , an_ 1 , an ) be a permutation of Sn . A pair 
(a; , a j )  with a; > a j and i < j is called an inversion of f. The set of inversions of f 
and the size of this set are denoted as follows 

/ (f) = { (a; , aj ) I a; > aj and i < j } , i (f) = l / (f) j .  
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EXAMPLE 1 .  Let f = (5 , 6,  2 , 1 ,  7 ,  4, 3) be a permutation of  S7 . Then 

I (f) = { (2 , 1 ) ,  (4, 3), (5 , 1 ) ,  (5 , 2) , (5 , 3), (5 , 4) , 
(6, 1 ) , (6, 2) , (6, 3 ) ,  (6, 4) , (7,  3), (7,  4) } , 

i (f) = l / (f) l = 1 2 . 

1 2 3 

DEFINITION 2 .  Let f = (a1 , a2 , a3 , • • •  , an- t , an ) be a permutation of Sn . The in
version difference of the set ! (f) is the sum di (f) = L(x . y)EI (f) (x - y) .  

EXAMPLE 2 .  Let f = ( 5 ,  6,  2, 1 ,  7 ,  4, 3) be  a permutation of  S7 . Then 

dl (f) = (2 - 1 )  + (4 - 3) + (5 - 1 )  + (5 - 2) + (5 - 3) + (5 - 4) 
+ (6 - 1) + (6 - 2) + (6 - 3) + (6 - 4) + (7 - 3) + (7 - 4) 

= 33. 

Distances and inversions are related 

At first sight it may seem that distances between permutations and their inversions 
have little in common. However, consider the following result. 

FACT 3 .  Let f E Sn and d2 (f) be the squared distance between f and the identity 
permutation t = ( 1 ,  2, 3, . . .  , n - 1 ,  n) . Then d2 (f) = 2d1ul · 

Notation 

In Fact 3, permutation f E Sn and the vertex it represents in Pn are considered the 
same. Moreover, d (f, t) is abbreviated as d (f) since all distances are measured from 
t .  

Before proving Fact 3 the following lemma i s  established. Fact 3 will easily follow 
from the lemma. 

LEMMA .  If g E Sn satisfying d2 (g) = 2d1 (g) and f E Sn is obtained from g by 
interchanging two consecutive entries in g then d2 (f) = 2d1ul · 

Proof Suppose f is formed from g by interchanging entries i and j in positions 
k and k + 1 .  If i < j ,  the inversion difference is increased by j - i ,  and if i > j ,  the 
inversion difference is decreased by i - j .  In either case, we have d1 (fl = d1 (g) + j -
i . 

Now consider how the square of the Euclidean distance changes. From the way f 
is obtained from g it follows that 

d2 (f) = d2 (g) + (k - j )2 - (k - i )2 + (k + 1 - i ) 2 - (k + 1 - j )2 

= d2 (g) + 2(j - i ) .  

Since g satisfies d2 (g) = 2d1 (g) we have 

d2 (f) = 2dl (g) + 2(j - i ) 
= 2dl (J) · • 
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Proof of Fact 3 .  Starting with the identity permutation t w e  have d2 (t) = 2d1 c,> = 
0. From t any other permutation f can be reached by a sequence of consecutive inter
changes.  Repeated applications of the lemma to the intermediate permutations g in the 
sequence eventually yields the desired result d2 (f) = 2d1u> •  thereby proving Fact 3 . 

• 

Finding all distances 

According to Fact 3 the determination of all distinct distances reduces to finding all 
distinct inversion difference values. Mathematica was used to obtain the number of 
distinct (nonzero) distances in the cases n = 4, 5, 6, 7, 8, and 9. From these values it 
soon became clear that the general formula was given by the binomial coefficient (n; 1 ) 
for n :=::: 4. Its easy to verify the formula for n = 1 ,  2 assuming that G) = 0. However, 
note that the formula does not hold for n = 3 since there are 3 nonzero distances, 
namely, h, ,J6 and v'8 but e; 1 ) = 4. 

Using Mathematica to generate sample data for the case n = 5 and organizing 
it led to the discovery of Fact 3 and a way to prove the next result. The distinct 
squared distances extracted from all 5 !  = 1 20 values produced by Mathematica were 
0, 2 ,  4, . . .  , 38 ,  40. This easily led to the observation that all even values up through 
a maximum value were generated. Examining squared distances and their correspond
ing permutations motivated the concept of an inversion difference and revealed the 
equation in Fact 3 .  

The data showed that permutations o f  the form (a 1 , a2 , a3 , a4 , 5) ,  i .e . ,  5 i s  a fixed 
point, produced the distinct squared distances 0, 2, 4, . . .  , 20. Reorganizing the data 
and separating out permutations of the form (5 , a2 , a3 , a4 , a5 ) gave the remaining 
squared distances 22, 24, 26, . . .  , 40. The next result and its proof by mathematical 
induction are generalizations of the case n = 5 .  

FACT 4 .  For n :=::: 4, the distinct inversion difference values for the permutations of 
Sn are 0, 1 ,  2, . . .  , (n;l 

Proof. Mathematica can be used to establish the case n = 4. Assume n :=::: 5 
and consider all permutations f E Sn of the form f = (a 1 , a2 , a3 , . . •  , an- I • n ) ,  
that i s ,  n i s  a fixed point. All such permutations correspond to permutations g = 
(a 1 , a2 , a3 , • • •  , an_ 1 ) E Sn- I · Moreover, it is obvious that the set of distinct inversion 
difference values d1u> is the same as the set of distinct inversion difference values 
dl (g) · 

Next, consider all permutations f E Sn of the form f = (n , a2 , a3 , . . .  , an- I , an ) . 
The inversion difference value of f can be written as 

n 
d1 cn = L)n - a; ) + L (a; - a1 ) 

i=2 2�i <j 

where it is understood that the only differences a; - a 1 that appear in the second sum 
are when a; > a J .  The values a; and a 1 used to calculate differences in the two sums 
come from the set Nn- l ·  Hence, the first sum calculates all the (positive) differences n - i for i E Nn , but, perhaps, in a different order. Therefore, the value of the first sum 
is (;) . 

The differences a; - a 1 that appear in the second sum use values a; and a 1 from 
the set Nn- l where a; > a1 . Hence, the second sum corresponds to an inversion dif
ference for some permutation g E Sn- l · Consequently, for each f E Sn of the form 
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dl (f) = (;) + dl (g) · 

By the induction hypothesis, the distinct inversion difference values d1 (g) for all g E 
Sn- l are 0, 1 ,  2, . . . , (

n-;+ 1 ) . Thus there are permutations g; in Sn- J .  for 1 :::; i :::; (�) , 
such that d1 (g; ) = (�) - G) + i . Corresponding to these g; we have permutations /; in 
Sn , for 1 :::; i :::; G) , such that 

d/ (f; ) = G) + i . 
This yields the remaining inversion difference values and proves Fact 4. • 

Related avenues of invest igation 

Studying a permutohedron using other metrics to measure distance or focusing on 
permutations in a subgroup of Sn are topics that may uncover some interesting results . 
Cayley's  theorem tells us that every finite group G is isomorphic to a subgroup of 
Sn . Let ({J : G --+ S be such an isomorphism where S is a subgroup of Sn . If G is a 
finite group and x ,  y E G,  define a metric d(x ,  y) = l i ({J (x ) - ({J (y) l l  where I I  · I I  i s  the 
Euclidean distance between vertices ({J (x) and ({J (y) of the permutohedron. It would 
be interesting to count distinct distances, measure E -neighborhoods, etc . ,  for those 
vertices of the permutohedron corresponding to the group elements under ({J .  

A departi ng challenge 

Consider the n !  x n !  distance matrix Dn where duv = d(u ,  v) the Euclidean distance 
between vertices u and v in Pn . Its easy to see that Dn is symmetric. Find a formula 
for det (Dn ) ,  the determinant of Dn . Enjoy !  
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This paper attempts to come up with the minimal structure needed to mimic Godel 's 
formal system with regard to self-referring sentences, incompleteness, the futility of 
striving for completeness, and the inability to define or name truth. It  takes the ap
proach used by Raymond Smullyan [2, pp. 1 69-1 92] ,  who chooses for consideration 
a special set of sentences involving the natural numbers, which numbers are used in 
turn as code names for these sentences. That system is further simplified here, most 
essentially by replacing the set of natural numbers with an arbitrary set that can have 
as few as two members. It will be called a G-system, but first let us review Godel 's 
result. 

Godel systems Suppose we are given a formal axiom system that includes axioms 
for the basic properties of the natural numbers and their arithmetic.  A Godel system for 
these formal axioms is a code that uses natural numbers to represent not only the ax
ioms, but the formal language (symbols) of the system. This enables the construction 
of sentences in the arithmetic, which, upon decoding, refer to themselves. In Godel 's 
proof of his theorem, one such sentence asserts its own unprovability within the sys
tem. By reasoning outside the system and assuming this sentence is false, it follows 
the sentence is provable, which means either the system is not consistent, or, if consis
tent, then the assumption is wrong and the sentence is true. Since a consistent system 
in which all true sentences are provable is called complete, Godel 's theorem can be 
expressed simply as 

A Godel system, if consistent, is incomplete. 

G-systems In order to construct sentences that refer to themselves, consider a set I 
and let X be a subset of I .  Then for i E I ,  the sentence "i E X" has i for the subject 
and X for the predicate. Next, one assigns the elements i E I as code names for some 
of the subsets by means of a naming function N, where 

N : I ---+ { X I X s; I } ,  i �---+ N; . 

The sentences "i E N;" are then selected for consideration, and, by letting them in
herit the same code names as the N; , they can be decoded to assert something about 
themselves. To make this explicit, define for each subset X the set of sentences coded 
by the i E X, 

S(X) = {"i E N; ' '  I i E X } .  

For the purposes of this paper, sentences not in S(l) will be excluded from consid
eration. For sentences in S(l ) ,  note that the following assertion, call it G; , is a direct 
consequence of the above definition for the case X =  N; . 

G; : i E N; if and only if "i E N; '' E S(N; ) . 
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Thus, the sentence "i E N; " can be interpreted, or decoded, as asserting something 
about itself, namely that it is a member of S(N; ) .  

An interesting subset to consider i s  the truth subset, 

T = {i I i E N; } , 

so S(T)  is the set of true sentences. If T is nameable with a code name, say t ,  so 
T = N1 , then "t E N1" can be interpreted as saying of itself that it is true. 

Another subset is the proof set P, consisting of the code names of the sentences 
that are provable from the axioms, so S (P)  is the set of provable sentences. Then if 
P is nameable, say P = NP , the sentence "p E NP" says of itself that it is provable. 
Similarly, if P ' , the complement of P, is nameable, say by P' = N p' ,  the sentence 
"p' E Np' "  becomes a form of the classic Godel sentence that says of itself that it is 
unprovable. For a G-system, which we are now ready to define, we want an axiom 
asserting that if a subset is nameable, so is the complement. To this end, we will use a 
complement function, 

c :  I -+  I ,  i �---+ c(i ) ,  

and then demand that i and c(i ) name complements of each other, as in Axiom c, 
which follows. 

DEFINITION .  A G-system I (N,  c ,  P)  consists of a set I, a naming function N,  a 
complement function c, and a specially designated subset P .  It satisfies the following 
two axioms. 

AXIOM c . Nc (i) = N; ', 

AXIOM P .  If i E P then i E N; . 

After showing that P is a proof set (in the next paragraph), axiom P can be de
coded as saying that if a sentence is provable then it is true. This is simply a property 
of a consistent Godel system, where Godel ' s  great accomplishment was constructing 
a predicate for natural numbers in the system's  formal language such that, upon de
coding, it corresponded to the predicate "provable" for the sentences coded by natural 
numbers. 

The sentences of S (P)  are just those of S(/)  that are provable. By axiom P it fol
lows directly that the sentences in S (P)  are provable. On the other hand the sentences 
not in S (P)  are not provable, since if i ¢:. P , there is no way to decide from the ax
ioms whether "i E N; " is true or false. They are in fact undecidable, since both cases 
are possible. Consider the example I = { 1 ,  2 } ,  P = { 1 } , c ( l )  = 2, c (2) = 1 with two 
different naming functions N and M.  

The axioms hold in  both cases, so  both are G-systems, and "2 E N2" is false while 
"2 E M2" is true. The reader is encouraged to consider other examples of G-systems, 
which are many and varied. In particular, P can be any subset of I, and N and c 
needn' t  be 1 - 1  mappings. A table of examples with various properties appears at the 
MAGAZINE website. 

The fact that there is a model for a G-system demonstrates that its axioms are con
sistent. Consistency in turn means that any provable sentence is true, that is, S ( P )  s; 
S(T) .  Note that in the N case above S (P)  = S ( T ) ,  while S (P)  i= S(T)  for M,  so one 
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i s  complete and the other incomplete. Note also that P is named by M and not named 
by N.  This leads to the main result. 

THEOREM P. A G-system, if P -nameable, is incomplete. 
Proof. Assume NP = P for some p .  Then, by axioms P and c, 

If c(p) E P, then c(p) E Nc(p) • but Nc(p) = Np' = P', 

which is  a contradiction. Thus c(p) ¢: P and "c(p) E Nc(p) , ¢: S(P) .  However, the 
following are equivalent, 

c(p) ¢:_ P , c (p) E P' , c (p) E Nc(p) , 

so c(p) E Nc(p) and "c(p) E Nccp( E S(T) .  • 

In an attempt to gain completeness for the system, one can add the troublesome sen
tence as an axiom, or, what is equivalent, one can consider the G-system I ( N, c, Q) , 
where Q = P U { c(p) } ,  since then the new set of provable sentences is 

S(Q) = S(P)  U { "c(p) E NcCpl " } . 

If Q is nameable, say by Q = Nq , then the new system satisfies Theorem P and the 
sentence "c(q) E Nc(q) " is true but not provable. If Q is not nameable, one can augment 
the set I by adding new elements in order to have names for Q and its complement, 
which means there will once again be a true but unprovable sentence. One can accord
ingly continue indefinitely by alternately augmenting the set of provable sentences and 
the set of names.  

A result concerning the concept of truth, which corresponds to Tarski 's  Theorem on 
the formal undefinability of truth for a GOdel system is the following. 

THEOREM T. For a G-system, T is unnameable. 
Proof. Assume N1 = T for some t E I .  Then Nc(t) = N/ = T' and the following 

are all equivalent (remember the definition of T). 

c(t) ¢: Nc(t) • c(t) ¢: T' , c (t ) E T, c (t) E Nc(t) • 

which produces a contradiction. • 

Another way to arrive at this contradiction is to consider G c(t) ,  which asserts the 
truth of the last sentence above if and only if this sentence is a member of the set of 
untrue sentences, that is, this sentence is a form of the classic sentence "This sentence 
is false." 

Com parison 

In comparing a Godel system with a G-system, there is a tradeoff between consistency 
and nameability. In a Godel system, all sentences are nameable, but the system may not 
be consistent. If it is consistent, then it is incomplete. A G-system, on the other hand, 
is consi stent, but P may not be nameable. If it is nameable, then it is incomplete. 

There is a kind of uncertainty principle here. To guarantee consistency, you can 
go finite, but then you don' t  have enough names to code all the sentences in your 
language. To have enough names, you can go infinite, but you no longer can prove 
consistency. 
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In A Mathematician 's Apology [1] G. H. Hardy states, "87 1 2  and 9801 are the only 
four-figure numbers which are integral multiples of their reversals";  and, he further 
comments that "this is not a serious theorem, as it is not capable of any significant 
generalization." 

However, Hardy's  comment may have been short-sighted. In 1 966, A. Sutcliffe [2] 
expanded this obscure fact about reversals .  Instead of restricting his study to base 
10 integers and their reversals,  Sutcliffe generalized the problem to study all integer 
solutions of 

with n :=:: 2, 1 < k < n ,  0 :::: ai :::: n - 1 for all i ,  a0 i= 0, ah i= 0. We shall refer to 
such an integer a0 • • •  ah as an (h + I ) -digit solution for n and write 

For example, 87 1 2  and 9801 are 4-digit solutions in base n = 10  for k = 4 and k = 9 
respectively. After characterizing all 2-digit solutions for fixed n and generating para
metric solutions for higher digit solutions, Sutcliffe left the following open question: 
Is there any base n for which there is a 3-digit solution but no 2-digit solution? 

Two years later T. J. Kaczynski* [3] answered Sutcliffe's  question in the negative. 
His elegant proof showed that if there exists a 3-digit solution for n, then deleting the 
middle digit gives a 2-digit solution for n .  Together with Sutcliffe's  work, this proved 
that there exists a 2-digit solution for n if and only if there exists a 3 -digit solution 
for n .  

Given the nice correspondence between 2 - and 3-digit solutions described b y  Sut
cliffe and Kaczynski, it is natural to ask if there exists such a correspondence for higher 
digit solutions .  In this paper, we will explore the relationship between 4- and 5-digit 
solutions. Unfortunately, there is not a bijection between these solutions, but there is 
a nice family of 4- and 5-digit solutions which have a natural one-to-one correspon
dence. 

*Better known for other work. 
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A second extension of Sutcliffe and Kaczynski 's results i s  to ask, "Is there any value 
of n for which there is a 5-digit solution but no 4-digit solution?" We will answer this 
question in the negative; and, furthermore, we will show that there exist 4- and 5-digit 
solutions for every n :::: 3 .  

A n  attempt at generalization. I n  the case of 3-digit solutions, Kaczynski proved 
that if n + 1 is prime and k (a ,  b, c)n = (c, b , a)n is a 3-digit solution for n ,  then 
k (a ,  c)n = (c, a)n is a 2-digit solution. Thus, we consider the following : 

QUESTION 1 .  Let k (a ,  b ,  c, d ,  e)n = (e , d ,  c ,  b ,  a)n be a 5-digit solution for n. If 
n + 1 is prime, then is k (a ,  b ,  d ,  e)n = (e , d ,  b , a)n a 4-digit solution for n ?  

First, following Kaczynski, let p = n + 1 .  We have 

k (an4 + bn3 + cn2 + dn + e) = en4 + dn3 + cn2 + bn + a . ( 1 )  

Reducing this equation modulo p, w e  obtain 

k (a - b + c - d + e) = e - d + c - b + a  = a  - b + c - d + e mod p .  

Thus, (k - 1 ) (a - b + c - d + e) = 0 mod p, and 

p I (k - 1 ) (a - b + c - d + e) . 

If p I (k - 1 ) ,  then k - 1 :=:: p ,  which is impossible because k < n .  Therefore, 

p I (a - b + c - d + e) . 

But -2p < -2n < a - b + c - d + e < 3n < 3p,  so there are four possibilities :  

( i )  a - b + c - d + e = -p ,  
(ii) a - b + c - d + e = 0, 

(iii) a - b + c - d + e = p, 
(iv) a - b + c - d + e = 2p.  

(2) 

Write a - b + c - d + e = fp, where f E { - 1 ,  0, 1 ,  2} .  Substituting c = -a + b + 
d - e +  fp into equation 1 gives: 

k [n2 (n2 - 1 )a + n2 (n + 1)b + fpn2 + n (n + l )d - (n2 - 1 )e] 
= n2 (n2 - 1)e + n2 (n + 1 )d + fpn2 + n (n + 1 )b - (n2 - l )a . 

After substituting for p ,  dividing by n + 1 ,  and rearranging, one sees that k[an3 + 
(b - a +  f)n2 + (d - e)n + e] = en3 + (d - e + f)n2 + (b - a)n + a . Indeed, this 
is a 4-digit solution for n if f = 0, b - a :::: 0, and d - e :=:: 0, but not necessarily a 
4-digit solution of the form conjectured in Question 1 .  

As i n  Kaczynski 's  proof for 2- and 3-digit solutions, it would be ideal if three of the 
four possible values for f lead to contradictions and the fourth leads to a "nice" pairing 
of 4- and 5-digit solutions. Unlike Kaczynski, we now have the added advantage of 
exploring these cases with computer programs such as Maple. Experimental evidence 
suggests that the cases f = - 1  and f = 2 are impossible. The cases f = 0 and f = 1 
are discussed below. 
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A counterexample. Unfortunately, Kaczynski 's  proof does not completely general
ize to higher digit solutions. Most 5-digit solutions do, in fact, yield 4-digit solutions 
in the manner described in Question I ,  but for sufficiently large n there are examples 
where (a ,  b, c ,  d, e)n is a 5-digit solution but (a ,  b, d, e)n is not a 4-digit solution. 

A computer search shows that the smallest such counterexamples appear when 
n = 22: 

7 (2, 8 ,  3 , 1 3 ,  1 6hz = ( 16 ,  1 3 ,  3 , 8 ,  2hz , 3 (2 , 16, 1 1 ,  5 ,  8)22 = (8 ,  5 ,  1 1 ,  16, 2)22 . 

However, there is no integer k for which k (2, 8 ,  1 3 ,  1 6hz = ( 16 ,  1 3 ,  8 ,  2hz or 
k (2, 16 ,  5 ,  8hz = (8 ,  5 ,  16 ,  2hz . Note that -2 + 8 + 1 3 - 16  = 3 and -2 + 1 6  + 
5 - 8 = 1 1 ;  that is, both of these counterexamples to Question 1 occur when f = 0. 
The next smallest counterexamples are 

3 (3 ,  22, 1 5 ,  7 ,  l lho = ( 1 1 ,  7 , 1 5 ,  22, 3)30 ,  8 (2 ,  1 3 ,  8 ,  16 ,  1 9h0 = ( 1 9 ,  16 ,  8 ,  1 3 ,  2h0 ,  

which occur when f = 0 and n = 30. 

A family of 4- and 5-digit solutions. Although Kaczynski 's  proof does not gener
alize entirely, there exists a family of 5-digit solutions when f = 1 that has a nice 
structure. 

THEOREM 1 .  Fix n 2: 2 and a > 0. Then 

k (a ,  a - 1 ,  n - 1 ,  n - a - 1 ,  n - a)n = (n - a ,  n - a - 1 ,  n - 1 ,  a - 1 ,  a)n 

is a 5 -digit solution for n if and only if a I (n - a) . 

Proof We have 

(n - a)n4 + (n - a - 1 )n3 + (n - 1 )nz + (a - 1 )n + a 
an4 + (a - 1 )n3 + (n - 1 )n2 + (n - a - l )n + (n - a) 

and the result is clear. 

Notice that 

(n - a) (n4 + n3 - n - 1 )  
a (n4 + n3 - n - 1 )  

n - a 
a 

(-a + (a - 1 ) )  + ( (n - a - 1 ) - (n - a)) + p = - 1  + - 1  + (n + 1 )  = n - 1 . 

• 

That is, this family of solutions occurs when f = 1 .  Moreover, this family follows the 
pattern described in Question 1 ;  that is, for each 5-digit solution described in Theorem 
1 ,  deleting its middle digit gives a 4-digit solution. 

THEOREM 2 .  If 

k (a ,  a - 1 ,  n - 1 ,  n - a - 1 ,  n - a)n = (n - a , n - a - 1 ,  n - 1 ,  a - 1 ,  a)n 

is a 5 -digit solution for n, then 

k (a , a - I , n - a  - 1 , n  - a)n = (n - a , n  - a  - l , a  - 1 , a)n 

is a 4-digit solution for n. 
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Proof By Theorem 1 ,  n:a E N. Now 

(n - a)n3 + (n - a - 1 )n2 + (a - l )n + a  
an3 + (a - 1 )n2 + (n - a - l )n + (n - a) 

(n - a) (n3 + n2 - n - 1 )  
a (n3 + n2 - n - 1 )  

n - a 
a • 

These 4-digit solutions were first described by Klosinski and Smolarski [ 4] in 1969, 
but their relationship to 5-digit solutions was not made explicit before now. 

It is also interesting to note that 9801 and 87 12, the two integers in Hardy's  discus
sion of reversals,  are included in this family of solutions.  

We conclude with the following corollary. 

C O ROL L A RY 1 .  There is a 4-digit solution and a 5 -digit solution for every n :=:: 3. 
Proof Let a = 1 in the statements of Theorem 1 and Theorem 2 above. • 

Some open questions. We have shown that there is no n for which there is a 5-
digit solution but no 4-digit solution. More specifically, we know that there are 4- and 
5-digit solutions for every n :::: 3 .  

Although Kaczynski 's  proof does not generalize directly to  4 - and 5-digit solutions, 
it does bring to light several questions about the structure of solutions to the digit 
reversal problem. 

First, it would be interesting to completely characterize 4- and 5-digit solutions for 
n .  Namely, 

1 .  All known counterexamples to Question 1 occur when f = 0. Are there counterex
amples for which f =!= 0? Is there a parameterization for all such counterexamples? 

2. Theorems 1 and 2 exhibit a family of 4- and 5-digit solutions for f = 1 with a 
particularly nice structure. To date, no other 4- or 5-digit solutions are known for 
f = 1 .  Do such solutions exist? 

More generally, 

3. Solutions to the digit reversal problem have not been explicitly characterized for 
more than 5 digits . Do there exist analogous results to Theorems 1 and 2 for higher 
digit solutions? 

A Maple package for exploring these questions is available from the author's  web 
page at http : //www . math . rutgers . edu/-lpudwell/maple . html . 

Acknowledgment. Thank you to Doron Zeilberger for suggesting this project. 
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Undergraduate calculus courses for business and economics majors frequently include 
the Gini coefficient of income inequality, or simply the "Gini coefficient," as an ap
plication of integration. See for example [1] and [2] . Because the U.S. Census Bureau 
provides the relevant information in quintiles, Simpson's rule, which requires an even 
number of intervals, cannot be used to approximate the integral. Usually the trape
zoidal rule is used which, because the Lorenz curve is concave upward, underestimates 
the Gini coefficient. Here we derive a rule which is exact for fifth-degree polynomials 
and is just as simple as Simpson's rule, which is exact only for third-degree polynomi
als. We first provide the necessary definitions and a typical textbook problem. 

A Lorenz Curve L(x) is the fraction of total income earned by the poorest frac
tion x ,  0 � x � 1 ,  of the population. The number 1 00x is a percentile. L(O) = 0, 
L(l )  = I, L'(x) 2:: 0, L"(x) 2:: 0. The Lorenz curve was invented by Max Lorenz in 
an undergraduate essay and quickly became popular. 

The Gini Coefficient G = 2 J01 [x - L(x)]dx is the ratio of the area between the 
line y = x (all incomes equal) and y = L(x) (shaded) to the maximum possible area 
of 4 (all income goes to one person). 

y 
1 .0 f--------.. 

0 .8  

0.6 

0.4 

0.2 0.4 0.6 0.8 1 .0 
X 

TYPICAL EXAMPLE.  Graph the Lorenz curve L(x) = �x2 + �x . (a) What part of 
the total income is earned by the poorest fifth? (b) Find the Gini coefficient G.  

Solution. See the graph. Note that x - L(x) is 0 a t  both ends. 

(a) L(.2) = � (.2)2 + � (.2) = .067 = 6.7%. 

(b) G = 21 1 [x - (�x2 + �x)] dx = 21 1 (�x - �x2) dx = � 1 1 
(x - x2)dx 

= � [�x2 - �x3I = � .  � = 1
5
8 � .278 

We now state and prove the quintile rule and apply it to real Census data. 

QUINTILE RULE. Let f be a polynomial of degree � 5 such that f(a) = f(b) = 0 
and h = � (b - a) .  Then 
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lh I 25 
f (x)dx = -h [3f(a + h) +  2f(a + 2h) + 2f(a + 3h) + 3f(a + 4h) ]  

a 288 

Proof Substitute to change the interval to [ -5, 5]. Then h = � = 2 and we seek 
coefficients A ,  B ,  C, D so 

J: (5 + x ) (5 - x)xn dx = 2[Af ( -3) + Bf ( - I ) + Cf ( l )  + Df (3)] 

is satisfied for n = 0, I , 2 ,  3, and hence for any linear combination. 

n = 0: (25 - x2) dx = - = 2 [ 16A + 24B + 24C + I 6D] 1 5 500 
-5 3 

n = 1 :  J: (25 - x2)x dx = 0 = 2[ -48A - 24B + 24C + 48D] 

n = 2:  (25 - x2)x2 dx = -- = 2 [ 144A + 24B + 24C + I44D] 1 5 2500 
-5 3 

n = 3 :  1 5 
(25 - x2)x3 dx = 0 = 2[ -432A - 24B + 24C + 432D] 

-5 

From n = 1 and n = 3 (the integrals vanish because the integrands are odd), we 
have D = A and C = B ,  so n = 0 and n = 2 give 

64A + 96B = 5�0 

576A + 96B - 2500 - 3 

which yield A = 1 25 = 3 . 1 25 and B = 1 25 = 2 . ill 96 288 144 288 . • 

EXAMPLE. Use Census data and the Quintile Rule to estimate the Gini coefficient 
of income inequality in 2000: the lowest fifth of U.S .  families earned 4.3% of the total, 
the second fifth 9.8%, the third fifth 1 5 .4%, the fourth fifth 22.7% and the highest fifth 
earned 47 .7%, based on cash income before taxes [3] . 

Solution. L (x) is the cumulative fraction. f(x) = x - L (x)  is 0 at 0 and 1 .  h = k · 

X fifth pet L (x) x - L (x) 
.200 lowest 4.3 .043 . 1 57 
.400 second 9.8 .043 + .098 = . 14 1  .259 
.600 third 1 5 .4 . 14 1  + . 1 54 = .295 .305 
.800 fourth 22.7 .295 + .227 = . 522 .278 

G = 2 1\x - L (x) ] dx 

1 25 I 
� 2 · - · - (3 X . 1 57 + 2 X .259 + 2 X . 305 + 3 X . 278) � .422 288 5 

The Census Bureau gets .433 using all the data, not just quinti1es. 
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REMARK. The equations n = 0 and n = 1 are satisfied by A = B = C = D = � 

giving the equal-weight formula for 0-ended cubics 

1b f(x)  dx = 
25 h [f(a + h) + f (a + 2h) + f (a + 3h) + f (a + 4h) ]  

a 24 

where h = k <b - a) .  

Acknowledgment. I would like to thank the referee for improving the rule from cubic to quintic polynomials 
and bringing the Example closer to the Census Bureau value. 
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In this note we offer a short proof that for any n x n matrices A and C over a field of 
scalars, 

A C  = I if and only if CA = I . 
An interesting aspect of this biconditional is the fact that it is equivalent to the condi
tional if AC = I then CA = I ;  one simply interchanges the roles of A and C .  

We assume the reader is familiar with the reduction o f  a matrix to row-echelon form. 
Recall that if A is n x n matrix then its reduced row-echelon form is a matrix of the 
same size with zeros in the pivot columns except for the pivots which are equal to 1 .  It 
is achieved by applying elementary row operations (row swapping, row addition, row 
scaling) to A .  An elementary matrix is one obtained by applying a single elementary 
row operation to the n x n identity matrix I . Elementary matrices have inverses that 
are also elementary matrices. Left multiplication of A by an elementary matrix E 
effects the same row operation on A that was used to create E .  

Let H b e  the reduced row echelon form of A ,  and let P b e  the product o f  those 
elementary matrices (in the appropriate order) that reduce A to H. P is an invertible 
matrix such that P A = H. Notice that H is the identity matrix if and only if it has n 
pivots. 

The proof. Beginning with AC = I , we left multiply this equation by P obtaining 
PAC = P or H C = P .  If H is not the identity matrix it must have a bottom row 
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of zeros forcing P to have likewise a bottom row of zeros, and this contradicts the 
invertibility of P . Thus H = I ,  C = P ,  and the equation P A = H is actually C A = I .  

This argument shows at once that (i) a matrix i s  invertible i f  and only i f  its reduced 
row echelon form is the identity matrix, and (ii) the set of invertible matrices is pre
cisely the set of products of elementary matrices. 

R E F E R ENCES 
I .  J. B. Fraleigh and R. A. Beauregard, Linear Algebra, Addison-Wesley, 3rd ed. , Reading, 1 995. 

Root Preserving Transformations 
of Polynomials 

B R A N K O C U R G U S  
Western Washington U n iversity 

Bell i ngham, WA 982 2 5 -9063 
curgus@cc.wwu.edu 

V A N I A M A S C I O N I 
Ball State U n iversity 

Munc ie, IN 47306-0490 
vdm@cs.bsu.edu 

Consider the real vector space P2 of all polynomials of degree at most 2. High-school 
students study the roots of the polynomials in P2 , while linear algebra students study 
linear transformations on P2 . Is it possible to bring these two groups together to do 
some joint research? 

For example, a linear algebra student chooses a specific linear transformation T : 
P2 ---+ P2 and asks others to study the roots of a polynomial 

p (x ) = ax2 + bx + c ,  x E JR ,  

and the roots of its image 

( Tp) (x ) = bx2 + ex + a ,  x E JR. ( 1 )  
Here a , b ,  and c are arbitrary real numbers. The students may immediately notice that 
the polynomial x2 + x + 1 is unchanged by this transformation. Hence this particular 
polynomial and its image have the same (complex) roots . After some "trial and error," 
a high-school student points out that the polynomial x2 + 3x + 2 has the roots - 1  
and -2, while its image 3x2 + 2x + 1 does not have real roots. Their next interesting 
discovery is that, with v i= 1 ,  the polynomial x2 + (v - 1 )x - v has roots 1 and - v , 
while its image (v - l )x2 - vx + 1 has roots 1 and 1 / (v - 1 ) .  This is curious since in 
this case a polynomial and its image have one common root, namely 1 .  

After further study the students conclude that there doesn' t  seem to be any general 
simple relationship between the roots of a polynomial p and the roots of its image 
Tp under the linear transformation given by ( 1 ) .  But the obvious fact is that there are 
plenty of other linear transformations on P2 ; will it always be the case that there is no 
simple relationship between the roots? Clearly, a non-zero multiple of the identity on 
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P2 does not change the roots of a polynomial, at all, and so such linear transformations 
are of no big interest in this study. 

In the rest of the note, instead of P2, we consider the (complex or real) vector space 
Pn of all polynomials of degree at most n. To cover both cases, lF stands for lR if we 
consider Pn as a real vector space and lF stands for C if we consider Pn as a complex 
vector space. For p in Pn we denote by Z (p) the set of all roots of p in lF. 

Inspired by the students ' investigations we ask the following question: 

Is there a (non-trivial) linear transformation T from Pn to Pn such that for each 
p E Pn with a root in JF, the polynomials p and Tp have a common root? 

Surprisingly, it seems that this question has not been addressed in the literature. 
The first author of this note has been assigning it at various levels of linear algebra 
courses. His experience is that students find it quite challenging even in the case n = 2.  
Students often offer "brute force" proofs that are based on calculating the matrix for 
the transformation T entry by entry. 

In the next theorem we give a general answer to the above question. In the proof we 
use only elementary linear algebra and Taylor polynomials.  

THEOREM . Let T =/= 0 be a linear transformation from Pn to Pn . Then 

Z (p)  n Z ( Tp) =/= 0 for all p E Pn such that Z (p) =/= 0 (2) 

if and only if T is a non-zero multiple of the identity on Pn · 

Proof The "if" part of the theorem is obvious.  To prove the "only if" part we 
assume (2). 

Let p E Pn be arbitrary. To prove that T p is a constant multiple of p we choose an 
arbitrary w E lF and evaluate (Tp) (w) .  To this end we consider the following n + 1 
polynomials in Pn 

eo (x ) : =  1 ,  ek . w (x ) := (x - w )
k , x E lF, k = l ,  . . .  , n .  (3) 

With notation (3) , the nth degree Taylor polynomial of p at w is 
n p(k) (w) p (x ) = p (w)eo (x ) + L 1 ek,w (x ) , x E lF. 

k= l  k . 

This equality provides a representation of p as a linear combination of the polynomials 
in (3) . Applying T to both sides of the last equality and using the linearity of T we 
obtain 

n p (k) (w ) 
(Tp) (x ) = p (w ) (Teo) (x ) + L 1 (Tek,w ) (x ) , x E lF. (4) 

k= l  k . 

Clearly, Z (ek , w ) = {w } =/= 0 for all k = 1 ,  . . .  , n .  Therefore, by assumption (2), 

0 =/= Z (ek . w ) n Z (Tek , w ) = { w } n Z (Tek , w ) · 

Consequently, w E  Z (Tek , w ) and thus 

(Tek .w ) (w ) = 0 for all k = 1 ,  . . .  , n .  

Now we set x = w in (4) and use the preceding n equalities to get 

(Tp) (w) = p (w ) (Te0) (w ) .  (5) 
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Notice that w E lF and p E Pn in (5) are arbitrary. Since the degree of the polynomial 
Tp E Pn is less than or equal to n ,  if we choose p E Pn to be of degree n ,  then (5) 
implies that the degree of T e0 must be zero. That is, T e0 is a constant polynomial : 
(Te0) (w) = c for all w E  lF, and so (5) implies that T is a multiple of the identity. • 

Now, the next natural (but quite a bit harder) question would be the following: 

Characterize those linear transformations T from Pn to Pn such that, for some 
constant C > 0 and for all p E Pn with Z (p) i= 0, some zeros of polynomials p 
and Tp are at most "distance C apart. " 

The notion itself of distance between the zero sets Z(p) and Z (Tp) needs to be 
clarified, of course, but this question has also been completely answered by the authors 
and the results will appear in a forthcoming article [ 1 ] .  A similar question was also 
considered in [2] . 
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For thousands of years mathematicians have studied the properties of cyclic polygons
polygons that can be circumscribed by a circle. There also exists a large number of 
findings concerning cyclic product relations for polygons-products of ratios of seg
ment lengths, as in [2] and the theorem of Menelaus (see FIGURE 1 ) . This paper 
intends to mix the two topics together, offering results reminiscent of but distinct from 
those found in [4] and [6] . A product of length-ratios is the primary focus, but rather 
than dealing with a single polygon we look at the interaction between a pair of cyclic 
polygons .  

Figure 1 Menelaus'  theorem states l v, s, l . l v2 s2 1 . l v3 s3 1 = 1 
ls 1  v2 1  1 s2 VJ I l s3 v, l 

On a circle we find the vertices of a polygon V = [v � o v2 , • • •  , vn ] , where the 
order of this set indicates the connection of the vertices. Instead of cutting this 
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n-gon with a transversal, we are going to "cut" it with a second inscribed n-gon 
W = [w 1 , w2 , . . .  , wn ] whose vertices are distinct from V .  For now, we assume both 
polygons are simple (i .e. neither intersects itself) and W has one vertex between every 
two consecutive vertices of V .  Within these polygons, every side necessarily contains 
two intersection points . Let S = {s 1 , s2 , • . •  , sn }  be a subset from the set of all inter
section points such that every side of each polygon contains exactly one element of 
S. There are necessarily two such sets. We label the vertices of V and W so that V; is 
adjacent to w; on the circle and s; so that it marks the intersection between the chords 
V; V;+ J  and w; wi+ J ·  An example with triangles is depicted in FIGURE 2. Using the 
"cut" and the labeling system just described, we have the following result. 

Figure 2 Two cyc l i c  tr i ang les 

LEMMA. lf V and W are simple n -gons inscribed in the same circle such that each 
side of the polygons contains exactly one point from the intersection subset S, then 

The proof of this follows from two well-known geometric results-the law of sines 
and the two-chord theorem, both of which can be found in [5] . We construct n triangles 
using v; , w;+1 , and s; for 1 :::; i :::; n, modulo n (see FIGURE 3 ) . Note that these points 
are never collinear because the vertices of V are distinct from the vertices of W. We 
define B; to be the inscribed angle with endpoints V; and w; , and by the law of sines we 
have 

Note that en+ l is the same as B� o so sin e; appears in both the numerator and denomi
nator of the right-hand side for 1 :::; i :::; n. Thus, we cancel to obtain 

The two-chord theorem states that when chords of a circle intersect, the product of 
the lengths of the segments formed on one chord equals that on the other chord. This 
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Figure 3 A possible construction for the triangles 

gives us n equations using the elements of S as the intersections, and multiplying these 
together yields 

or 

n n n ( l v; s; J · l s; v;+ I i ) = n ( l w; s; J · l s; wi+I I ) 
i= l  i= l  

But we have determined that the left-hand side of this equation is  one, so 

and the result follows from the multiplication of these expressions. 
The requirement that the polygons be simple turns out to be unnecessary. Inscribed 

polygons that are self-intersecting will also cut each other in such a way that the prod
uct from the lemma remains valid. 

THEOREM. Let V = [v 1 , V2 , . . .  , Vn ] and W = [w1 , W2, . . .  , Wn] be distinct n-gons 
inscribed in the same circle such that, in a given direction, w; is the next vertex on the 
circle after V;+r for some constant r (mod n). If S = {s 1 , s2 , . . .  , sn } such that s; is the 
intersection of v; Vi+ t  and W; W;+ t .  then 

An interested reader should be able to prove this generalization by closely following 
the reasoning of the proof of the lemma. As an assistive measure, and inspired by 
the subject of [4] , we may use pentagrams as a concrete example (see FIGURE 4). 
There are many points of intersection between V and W and thus several sets S (each 
corresponding to a different labeling of W). FIGURE 5 presents the cases where w; is 
after v;+ t  in the clockwise direction and after v;+3 in the counterclockwise direction, 
respectively. The triangles with which to apply the law of sines are highlighted. 
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Figure 4 Two cyclic pentagrams 

Figure 5 Two possible constructions for the pentagrams 

1 4 1 

There are further exercises that may be undertaken by the truly motivated reader. For 
instance, he or she may wish to prove the theorem of [ 4] using these results, or possibly 
to explore the author's conjecture that the theorem holds for polygons inscribed within 
an ellipse. For the non-geometer, situations can arise in dynamical systems where two 
polygons are inscribed within the same circle, specifically when dealing with circle 
maps [3, pp. 1 25-1 30] . One such case is outer billiards in the hyperbolic plane [1] .  
(For additional information on outer billiards look to [7] .)  If nothing else, i t  is always 
rewarding to uncover mathematical connections and we have found one between cyclic 
polygons, cyclic product relations, and dynamical systems. 
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It was known to the ancient Greeks that sums of two squares satisfy the composition 
law 

with 

( 2 2) ( 2 2) 2 2 X1 + X2 Y1 + Y2 = Z 1 + Z2 

Z 1  = X 1 Y1 + X2Y2 , Z2 = X 1 Y2 - X2Y1 , 

and to Euler in 1 770 that sums of four squares satisfy the composition law 

(x� + x� + xi + x�) (y� + y� + YI + y�) = zf + z� + z� + d 
with 

Z l = X 1 Y1 + X2Y2 + X3Y3 + X4y4 , Z2 = X 1 Y2 - X2Y1 + X3Y4 - X4y3 , 

Z3 = x1 Y3 - X2Y4 - X3Y1 + X4Y2 . Z4 = x1 Y4 + X2Y3 - X3Y2 - X4Y1 . 

Degen in 1 822 and Cayley in 1 845 gave the corresponding identity for eight squares, 
see for example [ 6, p. 2] . Sums of three squares however cannot possess an analogous 
composition law as 3 = 1 2 + 1 2 + 1 2 , 5 = 02 + 1 2 + 22 but 1 5  = 3 · 5 =1= x2 + y2 + z2 

for integers x ,  y ,  z . Hurwitz proved in 1 898 that there is an identity of the type 

( 2 2) ( 2 2 ) 2 2 X I + . . .  + xn Yl + . . .  + Yn = z l + . . .  + Zn , 

where the Zk are bilinear functions of the x; and y; , if and only if n = 1 ,  2, 4, 8 . Dickson 
[2] gave a detailed, amplified form of Hurwitz 's  proof in four pages. Raj wade [6] gave 
an amplified version of Dickson's  proof in six pages. A proof using normed algebras 
is given in [1] . For more on such laws see for example [6] . 

As 2 = 1 2 + 1 2 + 2 . 02 , 7 = 1 2 + 22 + 2 . 1 2 , and 14  = 2 . 7 =1= x2 + y2 + 2z2 for 
integers x ,  y ,  z there cannot exist a composition law of the type 

( 2 2 2 2 ) ( 2 2 2 2 ) 2 2 2 2 x l + X2 + x3 Y 1 + Y2 + Y3 = Z 1 + Z2 + Z3 

with z 1 ,  z2 , z3 bilinear functions of x1 , x2 , x3 and y1 , y2 , y3 with integer coefficients . 
However every odd positive integer can always be expressed in the form x2 + y2 + 2z2 

for some integers x ,  y ,  z ,  see for example [3, Theorem 86, p. 96] ,  [4] , [5, Theorem 1 ] .  

*Research of the second author was supported by National Sciences and Engineering Research Council of 
Canada grant A-7233 .  
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Moreover one of x and y is odd and one is even. Thus every positive odd integer is of 
the form 

for some integers x1 , x2 , x3 . Let m and n be odd positive integers . Then m n is also an 
odd positive integer and there exist integers XJ , x2 , X3 , YJ . y2 , y3 , Z J . Z2 and z3 such that 

Hence 

m = (2x 1 + 1 ) 2 + 2xi + 4x� , 

n = (2Y I  + 1 )2 + 2yi + 4y� , 

m n = (2z i + 1 )2 + 2z� + 4z� . 

((2x i + 1 ) 2 + 2xi + 4x�) ( (2yi + 1 ) 2 + 2yi + 4y�) 

= (2z i + 1 ) 2 + 2z� + 4z� . 

The question naturally arises : Is this equality a consequence of some underlying com
position law for the polynomial (2x 1 + 1 )2 + 2x� + 4x�?  In fact it is not, as can be 
deduced from Hurwitz 's  theorem. We show this directly from first principles without 
recourse to Hurwitz 's  theorem. 

Suppose that there exist integers 

such that 

( (2xi + 1 )2 + 2xi + 4x�) ( (2yi + 1 )2 + 2yi + 4y�) 

= (2z 1 + 1 ) 2 + 2z� + 4z� 

( 1 ) 

is an identity in Z[xJ , x2 , X3 , YJ , Y2 , y3 ] with 

Z !  = a!X I Y I  + a2X1 Y2 + a3X 1 Y3 + a4X2Y1 + asX2Y2 + a6X2Y3 (2) 

+ a7X3Y1 + asX3Y2 + agX3Y3 + awx1 + al l x2 + a 1 2X3 

+ a 1 3Y 1  + a14y2 + a 1 sY3 + a16 , 

Z2 = b JX J Y I  + b2X1 Y2 + b3X 1 Y3 + b4X2Y1 + bsXzY2 + b6X2Y3 (3) 
+ b7X3Y1 + bsX3Y2 + bgx3y3 + bwx1 + b1 1 X2 + b 1 2X3 

+ b1 3y1 + b 14Y2 + b1 5 Y3 + b16 • 

Z3 = C JX I Y I  + C2X1 Y2 + C3X 1 Y3 + C4X2Y1 + CsXzYz + C6X2Y3 

+ C7X3Y1 + CgX3Y2 + CgX3Y3 + CJOX J + Cl 1 X2 + C 1 2X3 

+ C1 3 Y1 + CJ4Y2 + C J sY3 + CJ6 · 

(4) 

We equate the coefficients of y� , y3 , xzy� , x�, x�y3 , and x�y� in ( 1 ) (with z 1 , z2 , z3 
given by (2) , (3), (4) respectively) to obtain the required contradiction. We have 

[y�] 4at5 + 2bt5 + 4ct5 = 4 

so 

b1 s  = 0, (a1 s , C J s )  = (± 1 ,  0) or (0, ±1 ) ; (5) 
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[y, ]  4a i s (2a i 6 + 1 ) + 4b i sb i 6  + 8c1sC I6 = 0 
so by (5) and division by 4 we have 

a i s (2a i 6  + 1 ) + 2c i sC I 6  = 0, 

which forces a 1 5 to be even and thus, by (5) again 

a 1 s  = 0, c 1 s  = ± 1 ; 

[x2y�] 8a6a 1 s  + 4b6hs + 8c6c 1 s  = 0 
so by (5) and (6) 

so 

an = c 1 1  = 0, b1 1 = ± 1 ; 

[xiy3 ]  8a6a l l  + 4b6bn + 8c6c l l  = 0 
so by (8) 

Finally we consider the coefficient of xiy� in ( 1 ) .  We have 

4a� + 2b� + 4c� = 8 . 

Appealing to (7) and (9) we obtain the required contradiction a� = 2. 

(6) 

(7) 

(8) 

(9) 

Panaitopol [5] has shown that the only diagonal ternary quadratic forms ax2 + 
by2 + cz2 ( l  _::::: a _::::: b _::::: c) ,  which represent every odd positive integer are the forms 
x2 + y2 + 2z2 , x2 + 2y2 + 3z2 , and x2 + 2y2 + 4z2 • Our proof shows that the repre
sentability of odd integers by x2 + y2 + 2z2 and x2 + 2y2 + 4z2 does not arise from an 
underlying composition law. We leave it to the reader to show also that x2 + 2y2 + 3z2 

does not possess such a composition law. 
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Proposa l s  
To be considered for publica tion, solutions should be received by September 1,  
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1766. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 
Let f be differentiable on (0, oo) and let w be a positive real number. Prove that if 

limx-->oo (f' (x )  + wf(x)) = A, then limx-->oo f(x) = Ajw. 
1767. Proposed by Mowaffaq Hajja, Yarmouk University, lrbid, Jordan. 

Let G be the centroid of !::,ABC .  Prove that if L.BAC = 60° and L.BGC = 1 20° , 
then the triangle is equilateral . 

1768. Proposed by G.R.A.20 Problem Solving Group, Rome, Italy. 
For which positive integers n can the set { 1 ,  2, . . . , 2n } be partitioned into n two 

element subsets so that the sum of the two numbers in each subset is a perfect square? 

1769. Proposed by Michel Bataille, Rouen, France. 
For positive integer n ,  let 

Find a closed form expression for the coefficient of xi yj when Pn is expanded. 

1770. Proposed by Scott N. Armstrong, University of California, Berkeley, CA, and 
Christopher J. Hillar, Texas A &M University, College Station, TX. 

Let A. 1 ,  A.2 , • • .  , A.k be nonnegative real numbers summing to 1 ,  and let a 1 ,  a2 • . •  , ak 
be complex numbers. For n > k, define 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 
succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. 
Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames lA 500 1 1 ,  or mailed electronically (ideally as a 15f}3X file) to 
ehj ohnstCOiastate . edu. All communications, written or electronic, should include on each page the reader's 
name, full address, and an e-mail address and/or FAX number. 
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Prove that if there i s  a j ,  1 :S j :S n - 1 ,  such that J... j and J... H 1 are both nonzero, then 
limn ..... co an exists . In addition, determine the value of this limit. 

Q u ick ies 
Answers to the Quickies are on page 1 5 1 .  

Q969. Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, MI. 
Let n be a positive integer and k a natural number. Show that 

[ '  (k ' ) 2 

J
o (x - x2)k {nx } dx = 

2 (2k � 1 ) ! ' 
where {a} = a - LaJ denotes the fractional part of a .  
Q970. Proposed by L i  Zhou, Polk Community College, Winter Haven, FL. 

Let x be a positive real number and let m and n be integers with m :S n .  Evaluate 

So l ut ions  
Switch + and = April 2006 

1741. Proposed by Shahin Amrahov, ARI College, Ankara, Turkey. 
Find all positive integer triples (k, m ,  n) that solve 

a. 2k + 9m = r .  
b. 2k = 9m + 7n . 

Solution by Lloyd Husbands, Josh Nichols-Barrer, Yanir A. Rubinstein, and Olof 
Sisask, Massachusetts Inst�tute ofTechnology, Cambridge, MA. 
a. Reducing the equation modulo 7 we find 

2k + 2m = 0 (mod 7) . 

This is impossible because for positive integer r ,  2' = 1 ,  2, or 4 (mod 7) .  
b. The only solution is (k , m,  n) = (4, 1 ,  1 ) .  Considering the equation modulo 3 ,  we 

find 

(- l )k = 2k = r = 1 (mod 3) . 

It fol lows that k = 2k' is even. We can then rewrite the equation as 

7n = 2k _ gm = (2k' + 3m ) (2k' _ 3m ) .  

Because the difference of the two factors, (2k' + 3m ) - (2k' - 3m)  = 2 · 3m is not a 
multiple of 7 ,  it is not possible that both factors are multiples of 7. Thus one of the 
factors is 1 and it must be the smaller factor, that is, 

2k'
- 3m = 1 .  
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If k' :;:: 3 then modulo 8 this equation becomes -3m = l (mod 8) , which is impos
sible. It is then easy to check that the only solution is k' = 2, m = 1 .  This leads to 
the solution (k , m ,  n) = (4, 1 ,  1 ) .  

Also solved by Armstrong Problem Solvers, Brian D. Beasley, Robert Calcaterra, Minh Can, John Christo· 
pher, Chip Curtis, Robert L. Doucette, Elias Lampakis (Greece), Lenny Jones and Mike Long, Peter W. Lindstrom, 
David Lovit, David E. Manes, Jose H. Nieto ( Venezuela), Northwestern University Math Problem Solving Group, 
Gabriel T. Prajitura, Jeffrey Silver. Albert Stadler (Switzerland), Marian Tetiva (Romania), Gary L. Walls, Li 
Zhou, and the proposer. Michel Bataille (France), and Paul Weisenhorn (Germany), solved part a. There was one 
incorrect submission. 

Similar triangles Apri1 2006 

1742. Proposed by Luz M. DeAlba and Jeffrey Langford (student), Drake University, 
Des Moines, lA. 

Let C be a circle with center 0 and diameter A C and let B be any point on C dif
ferent from A and C.  Let D be the point of intersection of the perpendicular bisectors 
of 0 A and 0 B ,  and let E be the point of intersection of the perpendicular bisectors of 
OC and OB .  Prove that !:::.DEE is similar to !:::.ABC . 

Solution by Victor Y. Kutsenok, University of St. Francis, Fort Wayne, IN. 
Note that E is the circumcenter of triangle OC B and D is the circumcenter of 

triangle 0 B A . Thus 

LDEB � L O EB = LACE and 
1 LEDB = l L O DB = LCAB .  

It follows that triangles DB E and ABC are similar. 

D 

Also solved by ABC Student Problem Solving Group, Herb Bailey, Michel Bataille (France), ]any C. Binz 
(Switzerland), Robert Calcaterra, Minh Can, Miguel Amengual Covas, Gordon Crandall, Chip Curtis, Robert L. 
Doucette, Rodrigo Flores (Chile), Michael Goldenberg and Mark Kaplan, John G. Heuver (Canada), Elias Lam
pakis (Greece), Lau Sai Luk (Hong Kong), Junaid N. Mansuri, Charles McEachern, Jose H. Nieto ( Venezuela), 
Kees Onneweer, Gabriel T. Prajitura, Jawad Sadek, Volkhard Schindler (Germany), Jeffrey Silver and Christo
pher Mackeprang, Raul A. Simon (Chile), Seshadri Sivakumar (Canada), Albert Stadler (Switzerland), H. T. 
Tang, Marian Tetiva (Romania), R. S. Tiberio, Michael Vowe (Switzerland), Paul Weisenhorn (Germany), James 
G. Wendelberger, Doug Wilcock, Paul Wilfong and Harry Wilfong, Stuart V. Witt, Tom Zerger, Li Zhou, and the 
proposers. There was one solution with no name. 
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Bounding a sum Apri1 2006 

1743. Proposed by David P. Lang, Wentworth Institute of Technology, Boston, MA. 
Let {an }:;': 1 be a sequence of positive real numbers. For positive integer n ,  define 

Sn = .L';= I aj , and define Sn by 

Prove that if L = limn---+oo Sn exists, then L 2:: 1 .  

Many readers gave a solution along the following lines. 
For n > 2 and k < n ,  we have ___!!L > � .  Therefore - - sn -ak - Sn 

Thus if L = limn---+oo Sn exists, then L 2:: 1 .  
Solved by Michael Andreoli, Michel Bataille (France), Paul Bracken, J. L. Diaz-Barrero and M. Grau

Sanchez (Spain), Robert Calcaterra, Minh Can, Gordon Crandall, Chip Curtis, Prithwijit De (Ireland), Robert L. 
Doucette, Michael Goldenberg and Mark Kaplan, Peter Gressis, Eugene A. Herman, Elias Lampakis (Greece), 
Peter W. Lindstrom, S. C. Lacke, Behailu Mamma, Jose H. Nieto ( Venezuela), Northwestern University Math 
Problem Solving Group, Kees Onneweer, Paolo Perfetti (Italy), Gabriel T. Priijituri:i, Henry Ricardo, Edward 
Schmeichel, Albert Stadler (Switzerland), Marian Tetiva (Romania), Michael Vowe (Switzerland), Paul Weisen
horn (Germany), Stuart V. Witt, Li Zhou, and the proposer. There was one solution with no name. There was one 
incorrect submission. 

A sum of products Apri1 2006 

1744. Proposed by Michael Goldenberg and Mark Kaplan, The Ingenuity Project, 
Baltimore Polytechnic Institute, MD. 

For real number x 2:: 1 ,  define a 1 = 2x and an+ ! = a� - 2, n = 1 ,  2 ,  3 ,  . . . .  Find a 
closed form expression for 

oo n 
S(x) = I: n  a; 1 • 

n= ! k= I 

Solution by Michel Bataille, Rauen, France. 
We show that S(x) = x - ,JX2=1 . 
The result holds for x = 1 because then an = 2, and fl�= I a; 1 = f.- for n = 

1 ,  2 ,  3 ,  . . .  , and it follows that S ( l )  = .L;:: 1 f.- = 1 .  
Now let x > 1 and define u > 0 by cosh u = x .  Using the formula cosh 2a = 

2 cosh2 a - 1 ,  an easy induction argument can be used to prove that an = 2 cosh(2n- I  u)  
for all positive integers n .  Thus, 

(sinh u)a 1 a2 · · · an = 2n (sinh u ) (cosh u ) (cosh(2u))  · · · (cosh(2n- I u) ) .  

Repeated use of  the formula sinh 2a = 2 sinh a cosh a then yields 

sinh(2nu ) 
sinh u 

Because 

1 1 1 
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i t  follows that 

S (x) = � --
1
-- = (sinh u)  lim t ( 1 

-
1 ) � a 1 a2 · · · an N-+oo n= i tanh(2n- l u) tanh(2n u ) 

= (sinh u) (-
1
- - 1) = e-u . 

tanh u 

Finally, solving eu + e-u = 2x for e-u gives S(x)  = e-u = x - .JXZ=l. 
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Also solved by Dione Bailey and Elsie Campbell and Charles Diminnie, Paul Bracken and N. Nadeau, Robert 
Calcaterra, Minh Can, Knut Dale (Norway), Prithwijit De (Ireland), Jim Delany, Robert L. Doucette, G.R.A.20 
Problem Solving Group (Italy), Peter W Lindstrom, Jose H. Nieto ( Venezuela), Northwestern University Math 
Problem Solving Group, Volkhard Schindler (Germany), Nicholas C. Singer, Albert Stadler (Switzerland), Marian 
Tetiva (Romania), Michael Vowe (Switzerland), Li Zhou, and the proposer. There were three incorrect submis
sions. 

A continued fraction and e April 2006 

1745. Proposed by Gerald A. Edgar, The Ohio State University, Columbus, OH. 

For positive real number r, define 

Ao (r) = r, n = 0, 1 ,  2 ,  . . . . 

Show that limn-+oo An ( 1 )  exists and find the value of the limit. 

Note: Expanding the recursive definition when r = 1 one leads to the elaborate con
tinued fraction-like configuration 

1 + .!.±:.:.:_ 
1 + 2+ . .  

2 +  2+ . .  . 
1 + 3+ . .  . 

2 +  2+ . . 
2 +  3+ . .  

3 + 3+ . .  
1 + _____ 4�+,_ .. _. 

2 +  2+ . .  
2 +  3+ . .  

3 + 3+ . .  
2 +  4+ . .  

3 + l±:.::_ 
3 + 4+ . .  

4 + 4+ . .  5+ . .  

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI. 
We prove that limn-+ oo An ( l )  = e�l . The proof follows from three claims, each of 

which is proved by induction. 

CLAIM 1 .  For every r > 0 and integer n 2: 0, r S An (r) < r + 1 .  

The claim is true for n = 0. If the claim is true for n = k ,  then 

and hence, 

CLAIM 2. For every r 2: � and integer n > 0, ! An (r) - An- I (r) i S ( � )n- I . 
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It follows from Claim 1 that I A 1  (r) - A0 (r ) l < 1 .  If n > 1 ,  then 

I An (r) An- ! (r) I I An+ i (r ) - An (r ) l  = 
An (r + l )

-
An- ! (r + l )  

= I An (r) - An- i  (r) _ An- i (r ) 
. 

An (r + 1 ) - An- i  (r + 1 )  I An (r + 1 )  An- ! (r + 1 )  An (r + 1 )  

I An (r) - An_ , (r) l I An (r + 1 ) - An_ , (r + 1 ) 1 
< + . -

An (r + 1 )  An (r + 1 )  

Because An (r + 1 )  2: r + 1 2: � . Claim 2 follows by induction on n .  
Note that b y  applying Claim 2 to a telescoping sum, w e  can conclude that 

for j 2: k 2: n .  It then follows from Cauchy's  Criterion that limn--->oo An (r) exists for 
all r 2: � ·  

C 3 - 1 ' - 2 d b - "'
n 

(- i )k h .l' L A I M  . Let L (r )  - lmn--->00 An (r) ,  c - L (  ) , an n - L..,k=O � · T en ! Of 
integer r 2: 2, 

L (r )  = (- 1 )' 
c 

(r - 1 ) ! ( 1 - cbr- 1 )  

Claim 3 i s  true for r = 2. Because 

L (r )  
L (r)  = r + 

-L-(r_+_l,-) ' 
it follows that L (r + 1 )  = 

L (r)  
L (r) - r 

Claim 3 can now be proved by a routine induction argument. 
Now consider 

By Claim 1 ,  

Combining this with 

L (r )  
= (- l )' 

c 

r r ! ( l  - cbr- 1 )  

. L (r)  
hm -- = 1 .  r----+00 r 

. c 
hm - = 0 and . c 

hm ( l - cbr- 1 )  = 1 - - ,  r---> oo r !  r__,.oo e 

we conclude that L (2) = c = e. Hence, for n sufficiently large, An (2) is larger than � . 
so an argument similar to that used to prove Claim 2 can be used to prove that L ( l )  
exists . Finally, from L ( l )  = 1 + �m we find L ( l )  = e� i . 

Also solved by Peter W Lindstrom, S. C. Locke and A. D. Meyerowitz, Dave Trautman, Paul Weisenhom 
(Germany), and the proposer. There were two incorrect submissions. 
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Answers 
Solutions to the Quickies from page 1 4 6.  

A969. First observe that if n is a natural number, then {n ( l - y)} = 1 - {ny } for 
all y E [0, 1 ] ,  except for y = 0, .! ,  2 ,  . . . , n - t , 1 .  Let I be the value of the integral n n n 
and make the substitution x = 1 - y .  Because the value of a Riemann integral is un-
changed if the value of the integrand is changed on a discrete set, we obtain 

where f3 denotes the beta function. The result follows .  

A970. Observe that 

for any integer k . With this substitution, the product becomes a telescoping product 
and simplifies to 

Xzn+Z + Xzn+ l + 1 
xzm+l + xzm + 1 

. 
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PAU L  J .  CAMPBELL, Editor 
Belo i t  Co l l ege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are 
selected for this section to call attention to interesting mathematical exposition that occurs out
side the mainstream of mathematics literature. Readers are invited to suggest items for review 
to the editors. 

Fraga, Robert (ed.) , War Stories from Applied Math: Undergraduate Consultancy Projects, 
MAA, 2007; vii + 147 pp, $48.95 (P) (member: $39.50). ISBN 978-0-88385- 1 8 1 -4. 

At most institutions, the pure mathematicians long ago won the skirmish with the applied math
ematicians for control of the department's  mission. However, the department as a whole has 
been losing the struggle for students and for recognition in the institution. One result is that 
more applied mathematics is taught outside of mathematics departments than inside. Depart
ments seeking to change the balance find that applied mathematicians are rare and often more 
expensive than the dean will afford. The "war stories" in this collection are from a different 
front, the one where mathematics meets the "real world." They recount very successful cam
paigns to teach undergraduates consulting and research in "industrial mathematics," at a variety 
of institutions-a liberal arts university (Baker University), a management training program 
for liberal arts students (Indiana University), a private urban university (Marquette), a public 
university (Towson), a science college (Harvey Mudd), and an engineering school (Milwaukee 
School of Engineering) . The contributions address finding industrial contacts, integration of 
project work into course work, project deliverables, and management of such a program (in
cluding funding). A discouraging confirmatory note: One author moved from his department of 
mathematical sciences to the department of electrical and computer engineering, "hoping to find 
the climate in engineering a bit more encouraging for applications and for students '  careers." 
(Disclosure: I have a contribution in this book, but I like the others better.) 

Hayes, Brian, Foolproof, American Scientist 95 ( 1 ) (January-February 2007) 10- 15 ;  http : 
//www . ameri cans c i ent i st . org/template/As setDet ail/asset id/54428. 

Not many articles begin, "I was a teenage trisector" (though not the kind you may think) . Hayes 
tried to convince a fellow worker drawing scales on pointer meters that exact trisection of most 
angles is impossible. That Hayes could not convince his colleague left the question hanging, "if 
proof is a magic wand that works only in the hands of wizards, what is its utility to the rest of 
us?" Hayes recounts Thomas Hobbes's remarkable "epiphany" with Euclid's Elements (whose 
logic Hobbes unfortunately failed to master, becoming a mathematical crank). Hayes relates 
the story of the proof of the four-color theorem and cites Perelman's proof of the Poincare 
conjecture, caricatures (at his own expense) Plato's dialogue Meno with the slave boy, and 
concludes with an outline of Wantzel ' s  proof of nontrisectability. Along the way, Hayes (who 
characterizes himself as "not a mathematician" but "an embedded journalist in the math corps") 
claims that there is a kind of crisis going on about proof in mathematics, "but only because 
the entire history of mathematics is just one crisis after another. The foundations are always 
crumbling, and the barbarians are always at the gate." Gee, that, added to students '  fear of 
mathematics and hatred of science (or is it the other way round?), should let you sleep easy. 

1 5 2 
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Langville, Amy N. ,  and Carl D. Meyer, Google 's PageRank and Beyond: The Science of Search 
Engine Rankings, Princeton University Press, 2006; x + 224 pp, $35 . ISBN 0-69 1 - 1 2202-4, 
978-0-69 1 - 1 2202- 1 .  Chartier, Timothy, Googling Markov, The UMAP Journal 27 ( 1 )  (2006) 
1 7-30. Wills, Rebecca, Google's PageRank: The math behind the search engine, Mathematical 
Intelligencer 28 (4) (Fall 2006) 6-1 1 .  
Would Google have achieved search-engine supremacy without its PageRank algorithm? No 
way. Students and the general population should know that this algorithm, which presents search 
results in order of "importance" (number of links to the result) , is an application of pure math
ematics from long ago that touches daily lives today. Mathematics majors ought to know the 
linear algebra behind the algorithm (Perron-Frobenius theorem applied to a constantly-growing 
matrix of perhaps 25 billion rows)-and they can learn it in varying depth from these sources. 

Alsina, Claudi, and Roger B. Nelsen, Math Made Visual: Creating Images for Understanding 
Mathematics, MAA, 2006; xv + 1 73 pp, $49.95 (member: $39.95). ISBN 0-88385-746-4. Cas
selman, Bill, Mathematical Illustrations: A Manual of Geometry and PostScript, Cambridge 
University Press, 2005 ; ix + 3 1 8  pp, $90, $39 (P). ISBN 0-52 1 -8392 1 - 1 ,  0-52 1 -54788- 1 .  
"Manuscripts should be decorated so that their appearance alone will induce perusal" (Johannes 
Trithemius, c. 1492) .  Once upon a time, mathematicians sent typescript to a journal, which type
set it and had artists render the author's sketched figures into publication-quality illustrations. 
The forced compound interest of ever-greater productivity has abolished those practices. Fortu
nately, Donald Knuth gave us T!Y( for producing beautiful mathematical text on our own. But 
from handouts to lecture notes to published papers, mathematicians now must also generate 
their own figures (pity the geometers, whose need is the greatest ! ) .  The first of the two books 
listed focuses on a wealth of wonderful suggestions on how to visualize a mathematical idea, 
independent of technology (in fact, the authors give no hint about how their illustrations were 
prepared) . Casselman's book gives details of how to produce mathematical graphics, specifi
cally via PostScript, which gives complete control over the result; so does MetaPost, but Cas
selman finds it less intuitive. He also admits that integrating text (labels) into PostScript figures 
has not yet been made as easy as it should be. 

Newman, Mark, Albert-Liiszl6 Barabasi, and Duncan J. Watts, The Structure and Dynamics 
of Networks, Princeton University Press, 2006; x + 582 pp, $89.50, $49 .50 (P). ISBN 10 :  
0-69 1 - 1 1 356-4, ISBN 13 :  978-0-69 1 - 1 1 356-2; ISBN 10 :  0-69 1 - 1 1 357-2, ISBN 1 3 :  978-0-69 1 -
1 1 356-9. 
Many systems, both natural and artificial, from metabolism to food webs, from friendship to ter
rorism, from can be represented as networks. This book reprints fundamental papers on aspects 
of networks : historical development, empirical studies, models (including random, small-world, 
and scale-free networks) ,  and applications (epidemics and rumors, robustness, and searching). 
The editors emphasize that the "new" science of networks goes beyond graph theory in being 
concerned with empirical as well as theoretical questions, in approaching networks as dynamic 
objects, and in aiming to understand networks "not just as topological objects, but also as the 
framework upon which distributed dynamical systems are built." 

Aczel, Amir D. ,  Descartes ' Secret Notebook: A True Tale of Mathematics, Mysticism, and the 
Quest to Understand the Universe, Broadway Books, 2005 ; xiv + 274 pp, $24.95. ISBN 0-7679-
2033-3 .  
This is a cleverly-told tale of a notebook left in a strongbox by Descartes, which has been lost 
except for 10% that was copied by Leibniz. I am not a fan of mixing history with historical 
fiction (made-up dialogue, insinuated emotions) ; but I enjoyed what amounts to a popular bi
ography of Descartes, including personal delight in learning where he had the famous dreams 
that set him on the path to mathematics (though neither "Descartes, dreams" nor "Neuburg an 
der Donau" occurs in the index). I won't spoil the ending but must say that, despite Rosicru
cian echoes, many readers will find the final "cosmic formula" not nearly as sensational as the 
suppositions of Dan Brown's The Da Vinci Code. (In the text and in the index, "Lull" should be 
"Llull .") 
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Editors Note : Additional solutions will be printed i n  the Monthly later in the year. 

PROBLEMS 

Al. Find the volume of the region of points (x , y , z) such that 

(x2 + y2 + z2 + 8)2 ::::: 36(x2 + i) . 
A2. Alice and Bob play a game in which they take turns removing stones from a heap that 
initially has n stones. The number of stones removed at each turn must be one less than a prime 
number. The winner is the player who takes the last stone. Alice plays first. Prove that there 
are infinitely many n such that Bob has a winning strategy. (For example, if n = 1 7 ,  then Alice 
might take 6 leaving 1 1 ;  then Bob might take 1 leaving 1 0; then Alice can take the remaining 
stones to win.) 

A3. Let 1 ,  2 ,  3 , . . .  , 2005 , 2006, 2007 , 2009, 20 1 2 ,  20 1 6 ,  . . . be a sequence defined by 
Xk = k for k = 1 ,  2, . . .  , 2006 and Xk+ l = Xk + Xk-2005 for k � 2006. Show that the sequence 
has 2005 consecutive terms each divisible by 2006. 

A4. Let S = { 1 ,  2, . . . , n }  for some integer n > 1 .  Say a permutation rr of S has a local 
maximum at k E S if 

(i) rr (k)  > rr (k + I )  
(ii) rr (k - 1 )  < rr (k) and rr (k) > rr (k + 1 )  
(iii) rr (k - 1 )  < rr (k) 

for k = 1 
for 1 < k < n 

for k = n 

(For example, if n = 5 and rr takes values at 1 ,  2, 3, 4, 5 of 2, 1 ,  4, 5 ,  3 , then rr has a local 
maximum of 2 at k = 1 ,  and a local maximum of 5 at k = 4.) What is the average number of 
local maxima of a permutation of S, averaging over all permutations of S? 

AS. Let n be a positive odd integer and let e be a real number such that e /rr is irrational. Set 
ak = tan (e + krrjn ) ,  k = 1 ,  2,  . . .  , n. Prove that 

is an integer, and determine its value. 

A6. Four points are chosen uniformly and independently at random in the interior of a given 
circle. Find the probability that they are the vertices of a convex quadrilateral. 

Bl. Show that the curve x3 + 3xy + y3 = 1 contains only one set of three distinct points A ,  
B ,  and C, which are the vertices of an equilateral triangle, and find its area. 

B2. Prove that, for every set X = { x 1 , xz , . . .  , Xn } of n real numbers, there exist a non-empty 
subset S of X and an integer m such that 

1 54 

lm +
:L> I :::::

-
1 

. 
s E S  n + l 
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B3. Let S be a finite set of points in the plane. A linear partition of S is an unordered pair 
{ A ,  B }  of subsets of S such that A U  B = S, A n  B = 0, and A and B lie on opposite sides 
of some straight line disjoint from S (A or B may be empty). Let Ls be the number of linear 
partitions of S. For each positive integer n, find the maximum of Ls over all sets S of n points . 

B4. Let Z denote the set of points in !Rn whose coordinates are 0 or I . (Thus Z has 2n 
elements, which are the vertices of a unit hypercube in !Rn .) Given a vector subspace V of 
!Rn , let Z ( V) denote the number of members of Z that lie in V. Let k be given, 0 :S k :S n. Find 
the maximum, over all vector subspaces V s; !Rn of dimension k, of the number of points in 
v n z . 
BS. For each continuous function f :  [0, I ] ---+ IR, let / (f) = f0

1 x2 f (x) dx and J (f) = 
f0

1 x (f (x) )2 dx . Find the maximum value of I (f) - J (f) over all such functions f . 

B6. Let k be an integer greater than 1 .  Suppose ao > 0, and define an+ I = an + ( 1 /  !;/Q,;) for 
n ;:: 0. Evaluate limn->oo a�+ I /nk . 

S OLUTIONS 

Solution to Al.  The answer is 6rr2 . 
Convert to cylindrical coordinates by substituting r2 = x2 -1- y2 so the inequality becomes 

(r2 + z2 + 8)2 ::; 36r2 , which is equivalent to (r - 3)2 + z2 ::; I . The region is obtained by 
rotating the area in the x-z plane defined by (x - 3)2 + z2 ::; l about the z-axis. A standard 
method of shells integration gives the answer, 

V =  {
4

2JI - (x - 3)2 · 2nx dx = 4n f 1 
� · (u + 3) du 12 - 1  

= 4n (1 1 
u� du + 3 ! 1 

� du) = 4n (o + 3 � ) = 6n2 - 1 - 1 2 

substituting u = x - 3 and because the the first integral is of an odd function while the second 
is the area of a unit semicircle. 

Solution to A2. Suppose there are only finitely many n such that Bob will win if Alice starts 
with n stones. The smallest such n is 3, and let us say the largest is N where N ;:: 8. Consider 
the game starting with N ! - I stones. Alice must remove p - 1 stones, for p a prime number. 
Since N! isn't prime, she can't take all the stones, and she must leave m = N ! - 1 - (p - 1 )  = 
N ! - p stones where 3 ::; m ::; N .  But this implies that m divides p = N ! - m ,  contradicting 
the choice of p to be prime. Thus no such largest N can exist. That is ,  there must be infinitely 
many n for which Bob has a winning strategy. 

Solution to A3. We need only consider the sequence mod 2006. The continuation of the 
sequence is determined by any consecutive 2006 elements Xk-2005 . Xk-2004 • . . .  , Xk- l , Xk by 
the recursion relation. But there are only a finite number of such subsequences mod 2006, so 
the same subsequence must appear again eventually and so the sequence is eventually periodic 
say with a period L .  On the other hand, the recursion relation can be rewritten to determine 
the elements of the sequence before a given block of 2006 elements Xk-2004 • . . .  , Xk o Xk+ i •  
as Xk-2005 = Xk+ i - Xk . Thus if Xk-2005 = Xk-2005+L • . . .  , Xk- l = Xk- l +L • Xk = Xk+L • then 
working backward to the starting values, 1 = XJ = XL+ I ,  2 = x2 = XL+2 · . . .  , 2006 = x2006 = 
XL+2006 and the sequence is periodic from the beginning. Extend the sequence further back
ward to define xo = X2006 - x2oos = 1 ,  X- i = x2oos - x2004 = 1 , . . .  , x-2004 = x2 - Xi = 1 
and then X-2005 = Xi - XO = 0, X-2006 = XO - X- i = 0, . . . , X-4009 = X-2003 - X-2004 = 0. 
But then L > 4009 and XL-4009 = · · · = XL-2005 = 0 mod 2006, is a subsequence of 2005 
elements of the original sequence each divisible by 2006. 

Solution to A4. The answer is (n + 1 ) /3 .  We need to determine the total number of local 
maxima of permutations of S and divide by the total number n! of such permutations . We total 
the number of permutations that have a local maximum at k for 1 ::; k ::; n .  For k = 1 ,  there are 
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G) Cn - 2) ! = n ! /2 such obtained by choosing which two elements are the first two values of 
the permutation, knowing that the larger will be first if and only if the permutation has a local 
maximum at 1 ,  followed by any order of the remaining n - 2 values. The same logic applies 
for the case k = n. If 1 < k < n, first choose the three values for {n (k - 1 ) ,  n (k) ,  n (k + 1 ) } .  

This n will have a relative maximum at k iff these three values occur in one of two allow
able orders out of the six possible orders, the highest value must be n (k) and the second 
highest can be either n (k - 1 )  or n (k + 1 ) .  In any case, there are (n - 3) ! ways of ordering 
the remaining the n - 3 values. Hence there 2G) Cn - 3) ! = n !/3 permutations having a local 
maximum at an k with I < k < n. The total number of local maxima at all positions is thus 
2n !/2 + (n - 2)n !/3 = (n + 1 )n !/3 .  Thus the average number of local maxima for permuta
tions of S is (n + 1 )/3 .  

Solution to AS. The answer is n (- 1 ) Cn- 1 l12 • Consider the complex number w = cos(l:l ) + 
i sin(l:l ) .  The roots of the equation ( 1 + i

_
x ) n 

= w2n 
1 - tx  

are preci sely the ak = tan(l:l + k;: ) ,  for k = 1 ,  . . .  , n ,  since we check these are roots 

( 1 + iak ) n ( cos (l:l + �) + i sin (l:l + �) ) n (w ) n w2n ln 
1 - iak 

= 
cos (e + k;: ) - i sin (l:l + k;: ) 

= � = 
lw l 2n 

= w
' 

there are n of them, and the equation expands to a degree n polynomial equation 

0 = ( I + ix)n - w2n ( l - ixt 

= ( 1 - w2n ) + ni ( l + w2n )x + . . .  + nin- 1 ( 1 - w2n )xn- 1 + in ( I + w2n )xn . 

The sum of the zeros of this polynomial is the negative of the coefficient on xn- 1 divided by 
the coefficient on xn 

-nin- 1 ( 1  - w2n ) 
i n  ( I + w2n )  

and the product of the zeros i s  the negative (since n i s  odd) of the constant coefficient divided 
by the coefficient of xn 

Thus 

a 1  + a2 + · · · + an 

- ( 1  - w2n ) 
in ( I + w2n )  · 

Solution to A6 (from a student paper). The answer is 1 - 1;;2 . 
We may assume that our circle has unit radius and is centered at the origin. Suppose that 

three points P1 , P2 , P3 are chosen with coordinates X1 , X2 . X3 , going in counterclockwise 
order about the origin. Let T be the triangle formed by X 1 , X2 . X3 . Then 

The enclosed quantity is positive unless one of the points is inside the triangle formed by the 
other two points and the origin. 

Let 1:1 1 . 2 denote the counterclockwise angle from X1 to X2 . From probability theory, the 
2 

distribution of 1:1 1 z ,  the smallest order statistic, is --2 (2n - 1:1 ) .  · (2n ) 

LEMMA 1 .  E [sin(l:l ] . 2) ]  = � -
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Proof. We have 

E [sin(B1 2 ) ] = [ 2" � (2n - 8) sin 8 d8 ' Jo (2n ) 
2 2rr 2 1 

= --2 [-2n cos e + e cos e - sin e Jo = --2 (2n ) = - .  
(2n ) (2n ) n 

Let r; = IX; 1 .  the distance between P; and the origin. 

LEMMA 2. E [r; ] = � · 
Proof. The probability distribution function for r; is 2r , so 

1! 1 ' 
2r3 1 1 

E [r; ] = r · 2r dr =  2r2 dr = -
o 0 3 0 

2 
3 

1 5 7 

If none of P1 , P2 , P3 is inside the triangle defined by the origin and the other two points, and 
T' is the triangle formed by P, , P2 , P3 , 

E [Area(T') ]  = ! E [ (X, x X2) · k + (X2 x X3) · k + (X3 x X1 ) · k) . 
The expectation of the sum is the sum of the expectations, and these are equal by symmetry. 
Furthermore, 81 , 2 , r1 , r2 are independent of each other, so we have 

I 3 3 3 
E [Area(T )] = 2 E[(XI x X2) · k] = 2 E[sin 8 1 , 2 r, r2] = 2 E[sin 81 , 2] E [rJ ]E [r2] 

= � · � · (D
2 

3: 
Now consider the case in which one of the points is in the convex hull of the other two 

and the origin. The expected value for the area of such a triangle is three times the expected 
value when we consider only P3 inside the triangle formed by the other two and the origin. If 
S is the triangle formed by P, , P2 and the origin, the probablility that P3 is inside S is Are;(S) . 
Furthermore, the expected area of t::, P1 P2 P3 , for P3 chosen within S is !Area(S), since the 
expected ratio 

E 
[Area(T) J = E 

[d(P3 ,  P1 P2) ] = � . 
Area(S) d (O, P, P2) 3 

(because this is linear in P3 and is 1 /3 for the center of mass). Thus, the expected area for a 
triangle in this case is 

3E 
[ (Area(S))2 ] = _!_ E [ (Area(S))2 ) . 

3JT JT 

If e denotes the angle between P1 and P2 , then e is uniform on [0, n ]  and independent of r1 
and r2 , so we have 

= ___!__ (_!_ f" sin2 e de) ( f '  2r3 dr) 2 
= ___!__ . � . (�) 2 

4n n Jo Jo 4n 2 2 32n 

Putting this together with the preceding case, 
2 1 

E [Area(T)]  = - + 2 · - .  3n 32n 
It now follows that the probability that P4 is in triangle T once P1 , P2 , P3 are chosen, is 

E [Area(T) J = 
E [Area(T) ]  = � + _1 _ = � . 

JT JT 3n2 1 6n2 48n2 
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Finally, the probability that Pt , Pz , P3 , P4 forms a convex quadrilateral i s  I minus the proba
bility that one of the points is in the convex hull of the triangle formed by the other three, and 
this is 

1 - 4 (�) 
48n2 

as claimed. 

Solution to Bl. We check 

0 = x3 + 3xy + y3 - I 

= 
x + � - 1 ( ex +  1 )2 + (x - y)2 + (y + 1 )2) , 

so there are two parts of the curve, the straight line with equation x + y = 1 and the single point 
( - 1 , - I ) . The three points can only be A = ( - 1 , - I )  together with two symmetrically placed 
points B = (a ,  1 - a ) and C = ( 1  - a , a) so L. A B C  will be equilateral. The altitude of this 
triangle is the distance from A to D = ( 1 /2, 1 /2) , A D = 3./2/2, so the side of the triangle is 
.J6, and the area is 3./3/2. 

Solution to B2. Let Yk = X t + x2 + · · · + Xk for k = 1 ,  2 ,  . . .  , n .  Let mk = - LYd be the 
negative of the greatest integer less than or equal to Yk o  s o  0 ::5 mk + Yk < I . If mk + Yk ::5 
n� l then S = {x t , x2 , . . .  , xk } and m = mk satisfy the conditions. If n� l ::5 mk + Yk < 1 then 
S = {xt , x2 , . . .  , Xk } and m = mk - 1 satisfy the conditions. Otherwise n� l < mk + Yk < n� l 
for each k. Since the n - 1 intervals [ n{ l , �!: ] for j = 1 ,  2, . . .  , n - 1 together contain the n 
numbers mk + Yk o some interval contains two of these, say Yk and Ye with C > k. In this case, 
S = {xk+ l , Xk+2 · . . .  , x£ } and m = me - mk satisfy the conditions since 

lm + I > I = lme - mk + xk+ l + · · ·  + xe l  = l (me + Ye ) - (mk + Yk ) l ::5 -1- . 
s E S  n + 1 

Solution to B3. We will show that the maximum of Ls  is G) +  1 ,  and that this is attained if 
and only if the set S is in general position. That is, it does not have any three points lying on a 
single line. 

First, consider a set of points in general position. Let H denote the convex hull of this set. 
The partition having one empty set results whenever we select a line that does not intersect H .  
With this partition a s  an exception to the general rule, we  will show that the other partitions are 
in one-to-one correspondence with the lines through pairs of points in S, thus giving the total 
of G) + 1 partitions. 

For any line L separating S, we shall rotate it to obtain a line contacting one point from set 
A and one point from set B. First rotate the plane to view L as a vertical line with A on its left 
and B on its right. Rotate L in a positive direction (counterclockwise) about its lowest point of 
intersection with the hull until we contact the first point (or possibly two points) of A. Continue 
to rotate about the higher contact point until we contact a new point. If the new contact is in 
B ,  we stop, and if it is again in A, we continue to rotate about the new contact point. This 
procedure must conclude with a new line L' that has an A point contacted on the left above a B 

point contacted on the right. 
The original line L producing the partition is not unique but the contact line L' is unique to 

the partition. To verify this, suppose that a single partition has two partitioning lines L 1 and L2 
that give rise to two different contact lines L'1 and L; . What can we say about these two lines? 
If they do not intersect inside the hull, the strip between them must not contain any points of S, 
making it impossible to locate two of the four contact points. And if they do intersect, then two 
opposite sectors must be devoid of points from S, and again we cannot locate the four contact 
points (or perhaps three if two happen to coincide with the intersection point) while avoiding 
the forbidden sectors . The only conclusion we can reach is that both lines must transform to the 
same contact line. Thus, each partition has a unique contact line. 
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But could, perhaps, two different partitions transform to the same contact line? No, because 

as we rotate the separating line, points never change sides, so when two lines transform to the 
same contact line they necessarily have the same partition. So, the number of partitions cannot 
exceed (�) + 1 .  

It remains to show that every line L '  formed by a pair of points x and y in S is a contact line 
for some partition. To see this, rotate L' about the midpoint of the segment xy in the negative 
(clockwise) direction by a very tiny angle so that no other point in S is encountered during 
the rotation. The new line L is thus a partitioning line that will revert to L' as its contact line. 
Consequently, we have shown that any set of points in general position has exactly (�) + 1 
partitions. 

But what happens for sets that have three or more points on a single line? Say we have k 
points XI , x2 , . . .  , Xk of S on a single line L .  Now the (�) pairs all generate the same line. How 
many partitions can have this as the contact line? The separating line must intersect L at a point 
between a pair of the k points. Any two separating lines L 1  and L2 that both intersect between 
x j and x H 1 and then rotate to L as the contact line have to give the same partition. Thus, the 
line L can serve as the contact line for at most k - 1 partitions. We have lost (k2 1 ) of the (�) 
potential pairs, so we cannot attain the prior maximum of (;) + 1 .  Thus, any set with three or 
more points on a single line cannot attain the maximum. 

Solution to B4. The answer is 2k . 
Since 2k is realized when V is the k-dimensional space { (x i , x2 , . . .  , xn ) E JRn I x; = 0 for 

i > k} , the maximum value of Z(V)  is =:: 2k . We must show that Z (V )  :5 2k for all V of 
dimension k .  

Proof 1 .  Form a k x n matrix M whose rows comprise a basis of V .  We may assume that 
M is fully row-reduced and, in fact, by permuting coordinates of Rn , .that M is of the form 
( h I M') where h is the k x k identity matrix. Then if x = (X I , . . .  , xn ) E Z n V,  then x = 
I:7= l x; ri , where ri is the i th row of M. Since, for each i ,  x; = 0 or 1 ,  there are at most 2k 
such x. 

Proof 2. By induction on n. If n = 0 then k = 0 and V n Z = V = 0, so that Z (V )  = 1 = 
2k . Let n > 0 and assume the result holds for subspaces of JRn- I and all k, 0 :5 k :5 n - 1 .  
Suppose V is a k-dimensional subspace of Rn . Let p : Rn --+ Rn- l be the projection mapping 
(XJ , X2 , . . .  , Xn- J ,  Xn ) tO (X! , X2 , . . .  , Xn- J ) .  

Case 1 .  ker(p l v )  = 0 .  Then p l v  i s  injective and s o  Z(V)  = Z(p(V) )  :5 2k by  the induction 
hypothesis. 

Case 2. ker(p l v )  is spanned by en = (0, 0, . . .  , 0, 1) and so dim(p (V )  = k - 1 .  By the 
induction hypothesis Z(p(V) )  :5 2k- l . But for any w = (X J , . . .  , Xn- 1 ) E JRn- l , p- 1 (w) n 
Z = { (XJ , . . .  , Xn- 1 , 0) , (XI , . . .  , Xn- 1 , 1 )  } . Hence, Z (V)  :5 Z(p-\p(V) )  :5 2Z(p (V ) )  :5 2k . 

Solution to BS. The maximum is 1 / 1 6. We have 

Integrating, we have 

2 2 x3 ( x,JX) 2 
x (f (x))  - x f (x)  + 4 = Jxf(x) - -

2
-

{
I x3 1 

J (f) - l (f) + Jo 4 dx = J (f) - l (f) + 1 6 =:: O 

so I (f) - J (f) :5 1 I 1 6  and this value is achieved for f (x) = x /2. 

Solution to B6. The limit is 
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First we observe that an is an increasing sequence of positive terms. If there was a finite limit L 
to this sequence, then we would have L = L + l j L 1 1 k , but since this can't hold, there can be 
no finite limit and the sequence increases without bound. 

LEMMA . If limn�oo Xn+ i - Xn = L then limn-.00 Xn /n = L. 

Proof. Let E > 0 be given and take N so L - E/2 < Xn+ l  - Xn < L + E/2 for n ::=:: N.  Then 
for n > N,  

so 

Thus 

Xn - Xn- 1  + Xn- 1 - Xn-2 + · · · + XN+I - XN = Xn - XN , 
(L - E/2) (n - N) < Xn - XN < (L + E/2) (n - N) .  

E XN - L N + NE/2 (L - Ej2) (n - N) + xN 
L - - + = ---'-------

2 n n 

Xn (L + E/2) (n - N) + XN 
< - < 

n n 
E XN - L N - NE/2 

= L + - +  . 
2 n 

Taking N2 > max (2 1 xN - L N  + NE/2 1 /E ,  2 1 xN - L N - NE/2 1 /E ,  N),  for all n ::=:: N2 we 
have 

Hence Iimn�oo Xn /n = L .  

Xn 
L - E < - < L + E . 

n 

Apply this lemma to the limit of a�+ i / k j n .  (The difference between successive numerators 
is almost given by the recurrence relation, thus the observation that such a lemma should be use-
f I - I I l k h k - 1 / ! + I lk o I. k - 1 d I .  -U .) Let Tn - (an+ I an ) . T en rn - 1 - an --+ , Imn-.oo rn - an Imn�oo Tn -
1 .  Also, 

Hence 

so by the lemma 

and hence 

= an+ ! (rn - l )a� lk + (an+ I - an )a�l k 

an+ I (r� - l )a�/ k -,--....,....c-�o----- + I 
r�- l  + r�-2 + · · · + 1 

Tn 
r�- i + r�-2 + · · · + 1 

+ 1
. 

r 1 + 1 / k _ 1 + 1 /k _ 1 + ! n2.� an+ I an - k ' 

a�+ l / k 1 
lim -

n
- = 1 + -k , n-+oo 

ak+ l ( 1 ) k 
lim _n_ = 1 + -n-+00 nk k 
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